190 research outputs found

    Discrepancies in the Tumor Microenvironment of Spontaneous and Orthotopic Murine Models of Pancreatic Cancer Uncover a New Immunostimulatory Phenotype for B Cells.

    Get PDF
    B cells are salient features of pancreatic ductal adenocarcinoma (PDAC) tumors, yet their role in this disease remains controversial. Murine studies have indicated a protumoral role for B cells, whereas clinical data show tumor-infiltrating B cells are a positive prognostic factor, both in PDAC and other cancers. This disparity needs to be clarified in order to develop effective immunotherapies. In this study, we provide new evidence that reconcile human and mouse data and highlight the importance of using relevant preclinical tumor models when assessing B cell function. We compared B cell infiltration and activation in both a genetic model of murine PDAC (KPC mouse) and an injectable orthotopic model. A pronounced B cell infiltrate was only observed in KPC tumors and correlated with T cell infiltration, mirroring human disease. In contrast, orthotopic tumors exhibited a relative paucity of B cells. Accordingly, KPC-derived B cells displayed markers of B cell activation (germinal center entry, B cell memory, and plasma cell differentiation) accompanied by significant intratumoral immunoglobulin deposition, a feature markedly weaker in orthotopic tumors. Tumor immunoglobulins, however, did not appear to form immune complexes. Furthermore, in contrast to the current paradigm that tumor B cells are immunosuppressive, when assessed as a bulk population, intratumoral B cells upregulated several proinflammatory and immunostimulatory genes, a distinctly different phenotype to that of splenic-derived B cells; further highlighting the importance of studying tumor-infiltrating B cells over B cells from secondary lymphoid organs. In agreement with the current literature, genetic deletion of B cells (μMT mice) resulted in reduced orthotopic tumor growth, however, this was not recapitulated by treatment with B-cell-depleting anti-CD20 antibody and, more importantly, was not observed in anti-CD20-treated KPC mice. This suggests the result from B cell deficient mice might be caused by their altered immune system, rather than lack of B cells. Therefore, our data indicate B cells do not favor tumor progression. In conclusion, our analysis of relevant preclinical models shows B cells to be active members of the tumor microenvironment, producing immunostimulatory factors that might support the adaptive antitumor immune response, as suggested by human PDAC studies

    Beam Energy Dependence of Jet-Quenching Effects in Au plus Au Collisions at root s(NN)=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV

    Get PDF
    We report measurements of the nuclear modification factor, RCPR_{ \mathrm{CP}}, for charged hadrons as well as identified π+()\pi^{+(-)}, K+()K^{+(-)}, and p(p)p(\overline{p}) for Au+Au collision energies of sNN\sqrt{s_{_{ \mathrm{NN}}}} = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pTp_{\mathrm{T}} net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton RCPR_{ \mathrm{CP}} at high pTp_{\mathrm{T}} does depend on collision energy, neither the proton nor the anti-proton RCPR_{ \mathrm{CP}} at high pTp_{\mathrm{T}} exhibit net suppression at any energy. A study of how the binary collision scaled high-pTp_{\mathrm{T}} yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.We report measurements of the nuclear modification factor RCP for charged hadrons as well as identified π+(-), K+(-), and p(p¯) for Au+Au collision energies of sNN=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pT net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra but is also very similar for the kaon spectra. While the magnitude of the proton RCP at high pT does depend on the collision energy, neither the proton nor the antiproton RCP at high pT exhibit net suppression at any energy. A study of how the binary collision-scaled high-pT yield evolves with centrality reveals a nonmonotonic shape that is consistent with the idea that jet quenching is increasing faster than the combined phenomena that lead to enhancement

    Coherent diffractive photoproduction of rho(0) mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    Get PDF

    Harmonic decomposition of three-particle azimuthal correlations at energies available at the BNL Relativistic Heavy Ion Collider

    Get PDF

    Heat-induced Irreversible Denaturation of the Camelid Single Domain VHH Antibody Is Governed by Chemical Modifications

    Get PDF
    This research was originally published in the Journal of Biological Chemistry. Yoko Akazawa-Ogawa, Mizuki Takashima, Young-Ho Lee, Takahisa Ikegami, Yuji Goto, Koichi Uegaki and Yoshihisa Hagihara. Heat-induced Irreversible Denaturation of the Camelid Single Domain VHH Antibody Is Governed by Chemical Modifications. J. Biol. Chem. 2014; 289, 15666–15679. © the American Society for Biochemistry and Molecular Biolog

    Complement levels at admission as a reflection of coronavirus disease 2019 (COVID‐19) severity state

    No full text
    Background: Complement system hyperactivation has been proposed as a potential driver of adverse outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients, given prior research of complement deposits found in tissue and blood samples, as well as evidence of clinical improvement with anticomplement therapy. Its role in augmenting thrombotic microangiopathy mediated organ damage has also been implicated in coronavirus disease 2019 (COVID-19). This study aimed to examine associations between complement parameters and progression to severe COVID-19 illness, as well as correlations with other systems. Materials and methods: Blood samples of COVID-19 patients presenting to the emergency department (ED) were analyzed for a wide panel of complement and inflammatory biomarkers. The primary outcome was COVID-19 severity at index ED visit, while the secondary outcome was peak disease severity over the course of illness. Results: Fifty-two COVID-19 patients were enrolled. C3a (p=0.018), C3a/C3 ratio (p=0.002), and sC5b-9/C3 ratio (p=0.021) were significantly elevated in with severe disease at ED presentation. Over the course of illness, C3a (p=0.028) and C3a/C3 ratio (p=0.003) were highest in the moderate severity group. In multivariate regression controlled for confounders, complement hyperactivation failed to predict progression to severe disease. C3a, C3a/C3 ratio, and sC5b-9/C3 ratio were correlated positively with numerous inflammatory biomarkers, fibrinogen, and VWF:Ag, and negatively with plasminogen and ADAMTS13 activity. Conclusion: We found evidence of complement hyperactivation in COVID-19, associated with hyperinflammation and thrombotic microangiopathy. Complement inhibition should be further investigated for potential benefit in patients displaying a hyperinflammatory and microangiopathic phenotype. This article is protected by copyright. All rights reserved
    corecore