38 research outputs found

    A Mid-Infrared Census of Star Formation Activity in Bolocam Galactic Plane Survey Sources

    Full text link
    We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3,712 of 8,358) of the BGPS sources contain at least one mid-IR source, including 2,457 of 5,067 (49%) within the area where all surveys overlap (10 deg < l < 65 deg). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects (EGOs) and Red MSX Sources (RMS) make up the highest probability group, while the lowest probability group is comprised of "starless" BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the "starless" BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H_2 column density also increase with probability of star formation activity.Comment: 20 pages, 12 figures, 3 tables. Accepted for publication in ApJ. Full Table 2 will be available online through Ap

    The Spitzer Gould Belt Survey of Large Nearby Interstellar Clouds: Discovery of A Dense Embedded Cluster in the Serpens-Aquila Rift

    Get PDF
    We report the discovery of a nearby, embedded cluster of young stellar objects, associated filamentary infrared dark cloud, and 4.5 mu m shock emission knots from outflows detected in Spitzer IRAC mid-infrared imaging of the Serpens-Aquila Rift obtained as part of the Spitzer Gould Belt Legacy Survey. We also present radial velocity measurements of the region from molecular line observations obtained with the Submillimeter Array (SMA) that suggest the cluster is comoving with the Serpens Main embedded cluster to the north. We therefore assign it 3 degrees the same distance, 260 pc. The core of the new cluster, which we call Serpens South, is composed of an unusually large fraction of protostars (77%) at high mean surface density (> 430 pc(-2)) and short median nearest neighbor spacing (3700 AU). We perform basic cluster structure characterization using nearest neighbor surface density mapping of the YSOs and compare our findings to other known clusters with equivalent analyses available in the literature.Astronom

    The Bolocam Galactic Plane Survey: Survey Description and Data Reduction

    Get PDF
    We present the Bolocam Galactic Plane Survey (BGPS), a 1.1 mm continuum survey at 33" effective resolution of 170 square degrees of the Galactic Plane visible from the northern hemisphere. The survey is contiguous over the range -10.5 < l < 90.5, |b| < 0.5 and encompasses 133 square degrees, including some extended regions |b| < 1.5. In addition to the contiguous region, four targeted regions in the outer Galaxy were observed: IC1396, a region towards the Perseus Arm, W3/4/5, and Gem OB1. The BGPS has detected approximately 8400 clumps over the entire area to a limiting non-uniform 1-sigma noise level in the range 11 to 53 mJy/beam in the inner Galaxy. The BGPS source catalog is presented in a companion paper (Rosolowsky et al. 2010). This paper details the survey observations and data reduction methods for the images. We discuss in detail the determination of astrometric and flux density calibration uncertainties and compare our results to the literature. Data processing algorithms that separate astronomical signals from time-variable atmospheric fluctuations in the data time-stream are presented. These algorithms reproduce the structure of the astronomical sky over a limited range of angular scales and produce artifacts in the vicinity of bright sources. Based on simulations, we find that extended emission on scales larger than about 5.9' is nearly completely attenuated (> 90%) and the linear scale at which the attenuation reaches 50% is 3.8'. Comparison with other millimeter-wave data sets implies a possible systematic offset in flux calibration, for which no cause has been discovered. This presentation serves as a companion and guide to the public data release through NASA's Infrared Processing and Analysis Center (IPAC) Infrared Science Archive (IRSA). New data releases will be provided through IPAC IRSA with any future improvements in the reduction.Comment: Accepted for publication in Astrophysical Journal Supplemen

    The Bolocam Galactic Plane Survey V: HCO+ and N2H+ Spectroscopy of 1.1 mm Dust Continuum Sources

    Get PDF
    We present the results of observations of 1882 sources in the Bolocam Galactic Plane Survey (BGPS) at 1.1 mm with the 10m Heinrich Hertz Telescope simultaneously in HCO+ J=3-2 and N2H+ J=3-2. We detect 77% of these sources in HCO^+ and 51% in N2H+ at greater than 3σ\sigma. We find a strong correlation between the integrated intensity of both dense gas tracers and the 1.1 mm dust emission of BGPS sources. We determine kinematic distances for 529 sources (440 in the first quadrant breaking the distance ambiguity and 89 in the second quadrant) We derive the size, mass, and average density for this subset of clumps. The median size of BGPS clumps is 0.75 pc with a median mass of 330 M⊙_{\odot} (assuming T_{Dust}=20 K). The median HCO+ linewidth is 2.9 km s−1^{-1} indicating that BGPS clumps are dominated by supersonic turbulence or unresolved kinematic motions. We find no evidence for a size-linewidth relationship for BGPS clumps. We analyze the effects of the assumed dust temperature on the derived clump properties with a Monte Carlo simulation and we find that changing the temperature distribution will change the median source properties (mass, volume-averaged number density, surface density) by factors of a few. The observed differential mass distribution has a power-law slope that is intermediate between that observed for diffuse CO clouds and the stellar IMF. BGPS clumps represent a wide range of objects (from dense cores to more diffuse clumps) and are typically characterized by larger sizes and lower densities than previously published surveys of high-mass star-forming regions. This collection of objects is a less-biased sample of star-forming regions in the Milky Way that likely span a wide range of evolutionary states.Comment: 48 pages, 25 figures, Accepted for publicatio

    The Bolocam Galactic Plane Survey: II. Catalog of The Image Data

    Get PDF
    We present a catalog of 8358 sources extracted from images produced by the Bolocam Galactic Plane Survey (BGPS). The BGPS is a survey of the millimeter dust continuum emission from the northern Galactic plane. The catalog sources are extracted using a custom algorithm, Bolocat, which was designed specifically to identify and characterize objects in the large-area maps generated from the Bolocam instrument. The catalog products are designed to facilitate follow-up observations of these relatively unstudied objects. The catalog is 98% complete from 0.4 Jy to 60 Jy over all object sizes for which the survey is sensitive ( \u3c 3\u27.5). We find that the sources extracted can best be described as molecular clumps-large dense regions in molecular clouds linked to cluster formation. We find that the flux density distribution of sources follows a power law with dN/dS alpha S(-2.4+/-0.1) and that the mean Galactic latitude for sources is significantly below the midplane: \u3c b \u3e = (-0 degrees.095 +/- 0 degrees.001)

    The Bolocam Galactic Plane Survey IV: 1.1 and 0.35 mm Dust Continuum Emission in the Galactic Center Region

    Full text link
    The Bolocam Galactic Plane Survey (BGPS) data for a six square degree region of the Galactic plane containing the Galactic center is analyzed and compared to infrared and radio continuum data. The BGPS 1.1 mm emission consists of clumps interconnected by a network of fainter filaments surrounding cavities, a few of which are filled with diffuse near-IR emission indicating the presence of warm dust or with radio continuum characteristic of HII regions or supernova remnants. New 350 {\mu}m images of the environments of the two brightest regions, Sgr A and B, are presented. Sgr B2 is the brightest mm-emitting clump in the Central Molecular Zone and may be forming the closest analog to a super star cluster in the Galaxy. The Central Molecular Zone (CMZ) contains the highest concentration of mm and sub-mm emitting dense clumps in the Galaxy. Most 1.1 mm features at positive longitudes are seen in silhouette against the 3.6 to 24 {\mu}m background observed by the Spitzer Space Telescope. However, only a few clumps at negative longitudes are seen in absorption, confirming the hypothesis that positive longitude clumps in the CMZ tend to be on the near-side of the Galactic center, consistent with the suspected orientation of the central bar in our Galaxy. Some 1.1 mm cloud surfaces are seen in emission at 8 {\mu}m, presumably due to polycyclic aromatic hydrocarbons (PAHs). A ~0.2\degree (~30 pc) diameter cavity and infrared bubble between l \approx 0.0\degree and 0.2\degree surrounds the Arches and Quintuplet clusters and Sgr A. The bubble contains several clumpy dust filaments that point toward Sgr A\ast; its potential role in their formation is explored. [abstract truncated]Comment: 76 pages, 22 figures, published in ApJ: http://iopscience.iop.org/0004-637X/721/1/137

    Ionized Gas Towards Molecular Clumps: Physical Properties of Massive Star Forming Regions

    Get PDF
    We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, toward 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 H II regions are identified, of which 20 are newly discovered. Many of the H II regions are multiply peaked indicating the presence of a cluster of massive stars. We find that the ionized gas tends to be associated toward the millimeter clumps; of the 31 millimeter clumps observed, nine of these appear to be physically related to ionized gas, and a further six have ionized gas emission within 1'. For clumps with associated ionized gas, the combined mass of the ionizing massive stars is compared to the clump masses to provide an estimate of the instantaneous star formation efficiency. These values range from a few percent to 25%, and have an average of 7% ± 8%. We also find a correlation between the clump mass and the mass of the ionizing massive stars within it, which is consistent with a power law. This result is comparable to the prediction of star formation by competitive accretion that a power-law relationship exists between the mass of the most massive star in a cluster and the total mass of the remaining stars

    Codon Size Reduction as the Origin of the Triplet Genetic Code

    Get PDF
    The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon-anticodon interactions
    corecore