2,894 research outputs found

    Protostellar half-life: new methodology and estimates

    Full text link
    (Abridged) Protostellar systems evolve from prestellar cores, through the deeply embedded stage and then disk-dominated stage, before they end up on the main sequence. Knowing how much time a system spends in each stage is crucial for understanding how stars and associated planetary systems form, because a key constraint is the time available to form such systems. Equally important is understanding what the spread in these time scales is. The most commonly used method for inferring protostellar ages is to assume the lifetime of one evolutionary stage, and then scale this to the relative number of protostars in the other stages, i.e., assuming steady state. This method does not account for the underlying age distribution and apparent stochasticity of star formation, nor that relative populations are not in steady state. To overcome this, we propose a new scheme where the lifetime of each protostellar stage follows a distribution based on the formalism of sequential nuclear decay. The main assumptions are: Class 0 sources follow a straight path to Class III sources, the age distribution follows a binomial distribution, and the star-formation rate is constant. The results are that the half-life of Class 0, Class I, and Flat sources are (2.4+/-0.2)%, (4.4+/-0.3)%, and (4.3+/-0.4)% of the Class II half-life, respectively, which translates to 47+/-4, 88+/-7, and 87+/-8 kyr, respectively, for a Class II half-life of 2 Myr for protostars in the Gould Belt clouds with more than 100 protostars. The mean age of these clouds is 1.2+/-0.1 Myr, and the star formation rate is (8.3+/-0.5)x10^-4 Msun/yr. The critical parameters in arriving at these numbers are the assumed half-life of the Class II stage, and the assumption that the star-formation rate and half-lives are constant. This method presents a first step in moving from steady-state to non-steady-state solutions of protostellar populations.Comment: Accepted for publication in A&

    Wake vortex technology

    Get PDF
    A brief overview of the highlights of NASA's wake vortex minimization program is presented. The significant results of this program are summarized as follows: (1) it is technically feasible to reduce significantly the rolling upset created on a trailing aircraft; (2) the basic principles or methods by which reduction in the vortex strength can be achieved have been identified; and (3) an analytical capability for investigating aircraft vortex wakes has been developed

    Post-seismic and interseismic fault creep I: model description

    Get PDF
    We present a model of localized, aseismic fault creep during the full interseismic period, including both transient and steady fault creep, in response to a sequence of imposed coseismic slip events and tectonic loading. We consider the behaviour of models with linear viscous, non-linear viscous, rate-dependent friction, and rate- and state-dependent friction fault rheologies. Both the transient post-seismic creep and the pattern of steady interseismic creep rates surrounding asperities depend on recent coseismic slip and fault rheologies. In these models, post-seismic fault creep is manifest as pulses of elevated creep rates that propagate from the coseismic slip, these pulses feature sharper fronts and are longer lived in models with rate-state friction compared to other models. With small characteristic slip distances in rate-state friction models, interseismic creep is similar to that in models with rate-dependent friction faults, except for the earliest periods of post-seismic creep. Our model can be used to constrain fault rheologies from geodetic observations in cases where the coseismic slip history is relatively well known. When only considering surface deformation over a short period of time, there are strong trade-offs between fault rheology and the details of the imposed coseismic slip. Geodetic observations over longer times following an earthquake will reduce these trade-offs, while simultaneous modelling of interseismic and post-seismic observations provide the strongest constraints on fault rheologies

    Long-period ocean sound waves constrain shallow slip and tsunamis in megathrust ruptures

    Get PDF
    Great earthquakes along subduction-zone plate boundaries, like the magnitude 9.0 Tohoku-Oki, Japan, event, deform the seafloor to generate massive tsunamis. Tsunami wave heights near shore are greatest when excitation occurs far offshore near the trench, where water depths are greatest and fault slip is shallow. Unfortunately the rupture process there is poorly constrained with land-based geodetic and even seafloor deformation measurements. Here we demonstrate, through dynamic rupture simulations of the Tohoku event, that long-period sound waves in the ocean, observable with ocean-bottom pressure sensors and/or seismometers, can resolve the shallow rupture process and tsunami excitation near the trench. These waves could potentially be used to improve local tsunami early warning systems

    Heavy rain effects on airplane performance

    Get PDF
    The objective is to determine if the aerodynamic characteristics of an airplane are altered while flying in the rain. Wind-tunnel tests conducted at the NASA Langley Research Center (LaRC) have shown losses in maximum lift, reduction in stall angle, and increases in drag when a wing is placed in a simulated rain spray. For these tests the water spray concentration used represented a very heavy rainfall. A lack of definition of the scaling laws for aerodynamic testing in a two-phase, two-component flow makes interpolation of the wind-tunnel test uncertain. Tests of a large-scale wing are to be conducted at the LaRC. The large-scale wing is mounted on top of the Aircraft Landing Dynamics Facility (ALDF) carriage. This carriage (which is 70-foot long, 30-foot wide, and 30-foot high) is propelled with the wing model attached down a 3000-foot long test track by a water jet at speeds of up to 170 knots. A simulated rain spray system has been installed along 500 feet of the test track and can simulate rain falls from 2 to 40 inches/hour. Operational checks are underway and the initial tests should be completed by the Fall of 1989

    Mass transport from the envelope to the disk of V346 Nor: a case study for the luminosity problem in an FUor-type young eruptive star

    Get PDF
    A long-standing open issue of the paradigm of low-mass star formation is the luminosity problem: most protostars are less luminous than theoretically predicted. One possible solution is that the accretion process is episodic. FU Ori-type stars (FUors) are thought to be the visible examples for objects in the high accretion state. FUors are often surrounded by massive envelopes, which replenish the disk material and enable the disk to produce accretion outbursts. However, we have insufficient information on the envelope dynamics in FUors, about where and how mass transfer from the envelope to the disk happens. Here we present ALMA observations of the FUor-type star V346 Nor at 1.3 mm continuum and in different CO rotational lines. We mapped the density and velocity structure of its envelope and analyze the results using channel maps, position-velocity diagrams, and spectro-astrometric methods. We found that V346 Nor is surrounded by gaseous material on 10000 au scale in which a prominent outflow cavity is carved. Within the central \sim700 au, the circumstellar matter forms a flattened pseudo-disk where material is infalling with conserved angular momentum. Within \sim350 au, the velocity profile is more consistent with a disk in Keplerian rotation around a central star of 0.1 MM_{\odot}. We determined an infall rate from the envelope onto the disk of 6×\times106M^{-6}\,M_{\odot}yr1^{-1}, a factor of few higher than the quiescent accretion rate from the disk onto the star, hinting for a mismatch between the infall and accretion rates as the cause of the eruption.Comment: 16 pages, 8 figures, published in Ap
    corecore