HEAVY RAIN EFFECTS ON AIRPLANE PERFORMANCE

R. E. Dunham, Jr., G. M. Bezos, and B. A. Campbell NASA Langley Research Center Hampton, VA 23665

W. D. Mace, Jr. PRC/Kentron Inc. Hampton, VA 23665 and
W. E. Melson, Jr.
Wallops Flight Facility
Wallops Island, VA 23337

Abstract

The objective of this activity is to determine if the aerodynamic characteristics of an airplane are altered while flying in the rain. Wind-tunnel tests conducted at the NASA Langley Research Center (LaRC) have shown losses in maximum lift, reduction in stall angle, and increases in drag when a wing is placed in a simulated rain spray. For these tests the water spray concentration used represented a very heavy rainfall. A lack of definition of the scaling laws for aerodynamic testing in a two-phase, two-component flow makes interpolation of the wind-tunnel test uncertain.

Tests of a large-scale wing are to be conducted at the LaRC. The large-scale wing is mounted on top of the Aircraft Landing Dynamics Facility (ALDF) carriage. This carriage (which is 70 -foot long, 30 -foot wide, and 30 -foot high) is propelled with the wing model attached down a 3000 -foot long test track by a water jet at speeds of up to 170 knots. A simulated rain spray system has been installed along 500 foot of the tests track and can simulate rain falls from 2 to 40 inches/hour. Operational checks are underway and the initial tests should be completed by the Fall of 1989.

HEAVY RAIN EFFECTS
ARE THE AERODYNAMIC CHARACTERISTICS OF AN
AIRPLANE ALTERED WHILE FLYING IN THE RAIN?

$$
\star
$$

TUNNEL TESTS RESULTS
\pm

$$
\underbrace{3.0-2}_{0}
$$

$$
\begin{array}{cc}
& L W C\left(g / \mathrm{m}^{3}\right) \\
\circ & 0 \\
\square & 23 \\
\diamond & 39 \\
\triangle & 46
\end{array}
$$

ORGUNAL PAGE
BIACK AND WHITE FHOTOGRAPH

U.W.

BLACK AND WHHITE FTUOCGRAPH

Mins

BLACK AND VirtiTE rHUTOGRAPH

Onctrasmat
BLACK AND virme rnuTOGRAOH

GLAGK AUR ulatariOTOGRAPH

Frompt raco

- Spray system operational
- Wing/carriage Engineering checkout in progress
- Preliminary results indicate system capable of
providing good aerodynamic data
- Majority of tests matrix to be completed by Fall 1989

