276 research outputs found

    Summary of CPWF research in the Nile river basin

    Get PDF
    Three major river basins flow out of Ethiopia into Sudan, constituting the Eastern Nile basin (the White Nile flows from the south). These are the Tekeze-Atbara flowing out of northern Ethiopia, the Baro-Akoba- Sobat flowing from southern Ethiopia, and the Blue Nile (Abay) sandwiched between the other two. The Blue Nile Basin, called the Abay in Ethiopia, is the largest branch of the Nile draining the Ethiopian highlands. It covers an estimated area of 311,437 square kilometers and is shared by Ethiopia and Sudan. It joins the White Nile in Khartoum, Sudan. The Ethiopian highlands portion of the Blue Nile river basin was the focus of the Nile Basin Development Challenge under the Challenge Program on Water and Food

    Magnetars and pulsars: a missing link

    Get PDF
    There is growing evidence that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are isolated neutron stars with superstrong magnetic fields, i.e., magnetars, marking them a distinguished species from the conventional species of spindown-powered isolated neutron stars, i.e., radio pulsars. The current arguments in favor of the magnetar interpretation of SGR/AXP phenomenology will be outlined, and the two energy sources in magnetars, i.e. a magnetic dissipation energy and a spindown energy, will be reviewed. I will then discuss a missing link between magnetars and pulsars, i.e., lack of the observational evidence of the spindown-powered behaviors in known magnetars. Some recent theoretical efforts in studying such behaviors will be reviewed along with some predictions testable in the near future.Comment: Invited talk at the Sixth Pacific Rim Conference on Stellar Astrophysics, a tribute to Helmut A. Abt, July 11-17, 2002, Xi'an. To appear in the proceedings (eds. K. S. Cheng, K. C. Leung & T. P. Li

    High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function

    Get PDF
    We use a simple optical/infrared (IR) photometric selection of high-redshift QSOs that identifies a Lyman Break in the optical photometry and requires a red IR color to distinguish QSOs from common interlopers. The search yields 100 z~3 (U-dropout) QSO candidates with 19<r'<22 over 11.7 deg^2 in the ELAIS-N1 (EN1) and ELAIS-N2 (EN2) fields of the Spitzer Wide-area Infrared Extragalactic (SWIRE) Legacy Survey. The z~3 selection is reliable, with spectroscopic follow-up of 10 candidates confirming they are all QSOs at 2.83<z<3.44. We find that our z~4$ (g'-dropout) sample suffers from both unreliability and incompleteness but present 7 previously unidentified QSOs at 3.50<z<3.89. Detailed simulations show our z~3 completeness to be ~80-90% from 3.0<z<3.5, significantly better than the ~30-80% completeness of the SDSS at these redshifts. The resulting luminosity function extends two magnitudes fainter than SDSS and has a faint end slope of beta=-1.42 +- 0.15, consistent with values measured at lower redshift. Therefore, we see no evidence for evolution of the faint end slope of the QSO luminosity function. Including the SDSS QSO sample, we have now directly measured the space density of QSOs responsible for ~70% of the QSO UV luminosity density at z~3. We derive a maximum rate of HI photoionization from QSOs at z~3.2, Gamma = 4.8x10^-13 s^-1, about half of the total rate inferred through studies of the Ly-alpha forest. Therefore, star-forming galaxies and QSOs must contribute comparably to the photoionization of HI in the intergalactic medium at z~3.Comment: Accepted for publication in ApJ. emulateapj format. 23 pages, 17 figure

    Fermi Large Area Telescope observations of the Vela-X Pulsar Wind Nebula

    Get PDF
    We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2*3 degrees area south of the pulsar known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula (PWN) system and favor a scenario with two distinct electron populations.Comment: 21 pages, 5 figures, accepted for publication in Astrophysical Journa

    Cognitive behavioural therapy for adults with dissociative seizures (CODES): a pragmatic, multicentre, randomised controlled trial.

    Get PDF
    BACKGROUND: Dissociative seizures are paroxysmal events resembling epilepsy or syncope with characteristic features that allow them to be distinguished from other medical conditions. We aimed to compare the effectiveness of cognitive behavioural therapy (CBT) plus standardised medical care with standardised medical care alone for the reduction of dissociative seizure frequency. METHODS: In this pragmatic, parallel-arm, multicentre randomised controlled trial, we initially recruited participants at 27 neurology or epilepsy services in England, Scotland, and Wales. Adults (≥18 years) who had dissociative seizures in the previous 8 weeks and no epileptic seizures in the previous 12 months were subsequently randomly assigned (1:1) from 17 liaison or neuropsychiatry services following psychiatric assessment, to receive standardised medical care or CBT plus standardised medical care, using a web-based system. Randomisation was stratified by neuropsychiatry or liaison psychiatry recruitment site. The trial manager, chief investigator, all treating clinicians, and patients were aware of treatment allocation, but outcome data collectors and trial statisticians were unaware of treatment allocation. Patients were followed up 6 months and 12 months after randomisation. The primary outcome was monthly dissociative seizure frequency (ie, frequency in the previous 4 weeks) assessed at 12 months. Secondary outcomes assessed at 12 months were: seizure severity (intensity) and bothersomeness; longest period of seizure freedom in the previous 6 months; complete seizure freedom in the previous 3 months; a greater than 50% reduction in seizure frequency relative to baseline; changes in dissociative seizures (rated by others); health-related quality of life; psychosocial functioning; psychiatric symptoms, psychological distress, and somatic symptom burden; and clinical impression of improvement and satisfaction. p values and statistical significance for outcomes were reported without correction for multiple comparisons as per our protocol. Primary and secondary outcomes were assessed in the intention-to-treat population with multiple imputation for missing observations. This trial is registered with the International Standard Randomised Controlled Trial registry, ISRCTN05681227, and ClinicalTrials.gov, NCT02325544. FINDINGS: Between Jan 16, 2015, and May 31, 2017, we randomly assigned 368 patients to receive CBT plus standardised medical care (n=186) or standardised medical care alone (n=182); of whom 313 had primary outcome data at 12 months (156 [84%] of 186 patients in the CBT plus standardised medical care group and 157 [86%] of 182 patients in the standardised medical care group). At 12 months, no significant difference in monthly dissociative seizure frequency was identified between the groups (median 4 seizures [IQR 0-20] in the CBT plus standardised medical care group vs 7 seizures [1-35] in the standardised medical care group; estimated incidence rate ratio [IRR] 0·78 [95% CI 0·56-1·09]; p=0·144). Dissociative seizures were rated as less bothersome in the CBT plus standardised medical care group than the standardised medical care group (estimated mean difference -0·53 [95% CI -0·97 to -0·08]; p=0·020). The CBT plus standardised medical care group had a longer period of dissociative seizure freedom in the previous 6 months (estimated IRR 1·64 [95% CI 1·22 to 2·20]; p=0·001), reported better health-related quality of life on the EuroQoL-5 Dimensions-5 Level Health Today visual analogue scale (estimated mean difference 6·16 [95% CI 1·48 to 10·84]; p=0·010), less impairment in psychosocial functioning on the Work and Social Adjustment Scale (estimated mean difference -4·12 [95% CI -6·35 to -1·89]; p<0·001), less overall psychological distress than the standardised medical care group on the Clinical Outcomes in Routine Evaluation-10 scale (estimated mean difference -1·65 [95% CI -2·96 to -0·35]; p=0·013), and fewer somatic symptoms on the modified Patient Health Questionnaire-15 scale (estimated mean difference -1·67 [95% CI -2·90 to -0·44]; p=0·008). Clinical improvement at 12 months was greater in the CBT plus standardised medical care group than the standardised medical care alone group as reported by patients (estimated mean difference 0·66 [95% CI 0·26 to 1·04]; p=0·001) and by clinicians (estimated mean difference 0·47 [95% CI 0·21 to 0·73]; p<0·001), and the CBT plus standardised medical care group had greater satisfaction with treatment than did the standardised medical care group (estimated mean difference 0·90 [95% CI 0·48 to 1·31]; p<0·001). No significant differences in patient-reported seizure severity (estimated mean difference -0·11 [95% CI -0·50 to 0·29]; p=0·593) or seizure freedom in the last 3 months of the study (estimated odds ratio [OR] 1·77 [95% CI 0·93 to 3·37]; p=0·083) were identified between the groups. Furthermore, no significant differences were identified in the proportion of patients who had a more than 50% reduction in dissociative seizure frequency compared with baseline (OR 1·27 [95% CI 0·80 to 2·02]; p=0·313). Additionally, the 12-item Short Form survey-version 2 scores (estimated mean difference for the Physical Component Summary score 1·78 [95% CI -0·37 to 3·92]; p=0·105; estimated mean difference for the Mental Component Summary score 2·22 [95% CI -0·30 to 4·75]; p=0·084), the Generalised Anxiety Disorder-7 scale score (estimated mean difference -1·09 [95% CI -2·27 to 0·09]; p=0·069), and the Patient Health Questionnaire-9 scale depression score (estimated mean difference -1·10 [95% CI -2·41 to 0·21]; p=0·099) did not differ significantly between groups. Changes in dissociative seizures (rated by others) could not be assessed due to insufficient data. During the 12-month period, the number of adverse events was similar between the groups: 57 (31%) of 186 participants in the CBT plus standardised medical care group reported 97 adverse events and 53 (29%) of 182 participants in the standardised medical care group reported 79 adverse events. INTERPRETATION: CBT plus standardised medical care had no statistically significant advantage compared with standardised medical care alone for the reduction of monthly seizures. However, improvements were observed in a number of clinically relevant secondary outcomes following CBT plus standardised medical care when compared with standardised medical care alone. Thus, adults with dissociative seizures might benefit from the addition of dissociative seizure-specific CBT to specialist care from neurologists and psychiatrists. Future work is needed to identify patients who would benefit most from a dissociative seizure-specific CBT approach. FUNDING: National Institute for Health Research, Health Technology Assessment programme

    Chandra and Spitzer unveil heavily obscured quasars in the SWIRE/Chandra Survey

    Get PDF
    Using the large multi-wavelength data set in the chandra/SWIRE Survey (0.6 square degrees in the Lockman Hole), we show evidence for the existence of highly obscured (Compton-thick) AGN, estimate a lower limit to their surface density and characterize their multi-wavelength properties. Two independent selection methods based on the X-ray and infrared spectral properties are presented. The two selected samples contain 1) 5 X-ray sources with hard X-ray spectra and column densities > 10^24 cm-2, and 2) 120 infrared sources with red and AGN-dominated infrared spectral energy distributions (SEDs). We estimate a surface density of at least 25 Compton-thick AGN per square degree detected in the infrared in the chandra/SWIRE field of which ~40% show distinct AGN signatures in their optical/near-infrared SEDs, the remainings being dominated by the host-galaxy emission. Only ~33% of all Compton-thick AGN are detected in the X-rays at our depth (F(0.3-8 keV)>10^-15 erg/cm2/s. We report the discovery of two sources in our sample of Compton-thick AGN, SWIRE_J104409.95+585224.8 (z=2.54) and SWIRE_J104406.30+583954.1 (z=2.43), which are the most luminous Compton-thick AGN at high-z currently known. The properties of these two sources are discussed in detail with an analysis of their spectra, SEDs, luminosities and black-hole masses.Comment: ApJ accepted (to appear in May 2006 issue, vol. 642, of ApJ) Figures 2, 3, and 14 have been degraded due to space consideration

    Spin Down of Rotating Compact Magnetized Strange Stars in General Relativity

    Full text link
    We find that in general relativity slow down of the pulsar rotation due to the magnetodipolar radiation is more faster for the strange star with comparison to that for the neutron star of the same mass. Comparison with astrophysical observations on pulsars spindown data may provide an evidence for the strange star existence and, thus, serve as a test for distinguishing it from the neutron star.Comment: 6 pages; Accepted for publication in Astrophysics and Space Scienc

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201
    corecore