151 research outputs found

    Rickettsial Seroepidemiology among Farm Workers, Tianjin, People’s Republic of China

    Get PDF
    High seroprevalence rates for Anaplasma phagocytophilum (8.8%), Coxiella burnetii (6.4%), Bartonella henselae (9.6%), and Rickettsia typhi (4.1%) in 365 farm workers near Tianjin, People’s Republic of China, suggest that human infections with these zoonotic bacteria are frequent and largely unrecognized. Demographic features of seropositive persons suggest distinct epidemiology, ecology, and risks

    Lymph node hemophagocytosis in rickettsial diseases: a pathogenetic role for CD8 T lymphocytes in human monocytic ehrlichiosis (HME)?

    Get PDF
    BACKGROUND: Human monocytic ehrlichiosis (HME) and Rocky Mountain spotted fever (RMSF) are caused by Ehrlichia chaffeensis and Rickettsia rickettsii, respectively. The pathogenesis of RMSF relates to rickettsia-mediated vascular injury, but it is unclear in HME. METHODS: To study histopathologic responses in the lymphatic system for correlates of immune injury, lymph nodes from patients with HME (n = 6) and RMSF (n = 5) were examined. H&E-stained lymph node tissues were examined for five histopathologic features, including hemophagocytosis, cellularity, necrosis, and vascular congestion and edema. The relative proportions of CD68 macrophages, CD8 and CD4 T lymphocytes, and CD20 B lymphocytes were evaluated by immunohistochemical staining. RESULTS: Hemophagocytosis was similar in HME and RMSF, and was greater than in control cases (p = .015). Cellularity in HME was not different from controls, whereas RMSF lymph nodes were markedly less cellular (p < 0.002). E. chaffeensis-infected mononuclear phagocytes were infrequent compared to R. rickettsii-infected endothelial cells. More CD8 cells in lymph nodes were observed with HME (p < .001), but no quantitative differences in CD4 lymphocytes, macrophages, or B lymphocytes were identified. CONCLUSION: Hemophagocytosis, CD8 T cell expansion, and the paucity of infected cells in HME, suggest that E. chaffeensis infection leads to macrophage activation and immune-mediated injury

    Fatal Spotted Fever Rickettsiosis, Minas Gerais, Brazil

    Get PDF
    The emergence and reemergence of a serious infectious disease are often associated with a high case-fatality rate because of misdiagnosis and inappropriate or delayed treatment. The current reemergence of spotted fever rickettsiosis caused by Rickettsia rickettsii in Brazil has resulted in a high proportion of fatal cases. We describe two familial clusters of Brazilian spotted fever in the state of Minas Gerais, involving six children 9 months to 15 years of age; five died. Immunohistochemical investigation of tissues obtained at necropsy of a child in each location, Novo Cruzeiro and Coronel Fabriciano municipalities, established the diagnosis by demonstration of disseminated endothelial infection with spotted fever group rickettsiae. The diagnosis in the two fatal cases from Coronel Fabriciano and the surviving patient from Novo Cruzeiro was further supported by immunofluorescence serologic tests

    Guidelines for the direct detection of Anaplasma spp. in diagnosis and epidemiological studies

    Get PDF
    The genus Anaplasma (Rickettsiales: Anaplasmataceae) comprises obligate intracellular Gram-negative bacteria that are mainly transmitted by ticks, and currently includes six species: Anaplasma bovis, Anaplasma centrale, Anaplasma marginale, Anaplasma phagocytophilum, Anaplasma platys, and Anaplasma ovis. These have long been known as etiological agents of veterinary diseases that affect domestic and wild animals worldwide. A zoonotic role has been recognized for A. phagocytophilum, but other species can also be pathogenic for humans. Anaplasma infections are usually challenging to diagnose, clinically presenting with nonspecific symptoms that vary greatly depending on the agent involved, the affected host, and other factors such as immune status and coinfections. The substantial economic impact associated with livestock infection and the growing number of human cases along with the risk of transfusion-transmitted infections, determines the need for accurate laboratory tests. Because hosts are usually seronegative in the initial phase of infection and serological cross-reactions with several Anaplasma species are observed after seroconversion, direct tests are the best approach for both case definition and epidemiological studies. Blood samples are routinely used for Anaplasma spp. screening, but in persistently infected animals with intermittent or low-level bacteremia, other tissues might be useful. These guidelines have been developed as a direct outcome of the COST action TD1303 EURNEGVEC (>European Network of Neglected Vectors and Vector-Borne Diseases>). They review the direct laboratory tests (microscopy, nucleic acid-based detection and in vitro isolation) currently used for Anaplasma detection in ticks and vertebrates and their application.This work was done under the frame of COST action TD1303.Peer Reviewe
    corecore