63 research outputs found

    Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    Get PDF
    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments

    Design process and simulation testing of a shape memory alloy actuated robotic microgripper

    Get PDF
    Microgrippers are commonly used for micromanipulation of micro-objects with dimensions from 1 to 100 µm and attain features of reliable accuracy, low cost, wide jaw aperture and variable applied force. This paper studies the design process, simulation, and testing of a microgripper which can manipulate and assemble a platinum resistance temperature probe, made from a 25 µm diameter platinum wire, a 20 mm diameter tinned copper wire, and a printed circuit board type connector. Various microgripper structures and actuator types were researched and reviewed to determine the most suitable design for the required micromanipulation task. Operation tests using SolidWorks and ANSYS software were conducted to test a parallelogram structure with flexible single-notch hinges. The best suited material was found to be Aluminium alloy 7075-T6 as it was capable of producing a large jaw tip displacement of 0.7 mm without exceeding its tensile yield strength limit. A shape memory alloy was chosen as a choice of actuator to close the microgripper jaws. To ensure a repeatably accurate datum point, the final microgripper consisted of a fixed arm and a flexible arm. An optimisation process using ANSYS studied the hinge thickness and radius dimensions of the microgripper which improved its deflection whilst reducing the experienced stress

    Mechanisms of NK Cell-Macrophage Bacillus anthracis Crosstalk: A Balance between Stimulation by Spores and Differential Disruption by Toxins

    Get PDF
    NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms

    Controlling and characterising the deposits from polymer droplets containing microparticles and salt

    Get PDF
    It is very well known that as suspension droplets evaporate, a pinned contact line leads to strong outwards capillary flow resulting in a robust coffee ring-stain at the periphery of the droplet. Conversely tall pillars are deposited in the centre of the droplet when aqueous droplets of poly(ethylene oxide) evaporate following a boot-strapping process in which the contact line undergoes fast receding, driven by polymer precipitation. Here we map out the phase behaviour of a combined particle-polymer system, illustrating a range of final deposit shapes, from ring-stain to flat deposit to pillar. Deposit topologies are measured using profile images and stylus profilometery, and characterised using the skewness of the profile as a simple analytic method for quantifying the shapes: pillars produce positive skew, flat deposits have zero skew and ring-stains have a negative value. We also demonstrate that pillar formation can be disrupted using potassium sulphate salt solutions, which change the water from a good solvent to a thetapoint solvent, consequently reducing the size of the polymer coils. This inhibits polymer crystallisation, interfering with the bootstrap process and ultimately preventing pillars from forming. Again, the deposit shapes are quantified using the skew parameter

    Molecular Preadaptation to Antimony Resistance in Leishmania donovani on the Indian Subcontinent

    No full text
    ABSTRACT Antimonials (Sb) were used for decades for chemotherapy of visceral leishmaniasis (VL). Now abandoned in the Indian subcontinent (ISC) because of Leishmania donovani resistance, this drug offers a unique model for understanding drug resistance dynamics. In a previous phylogenomic study, we found two distinct populations of L. donovani: the core group (CG) in the Gangetic plains and ISC1 in the Nepalese highlands. Sb resistance was only encountered within the CG, and a series of potential markers were identified. Here, we analyzed the development of resistance to trivalent antimonials (SbIII) upon experimental selection in ISC1 and CG strains. We observed that (i) baseline SbIII susceptibility of parasites was higher in ISC1 than in the CG, (ii) time to SbIII resistance was higher for ISC1 parasites than for CG strains, and (iii) untargeted genomic and metabolomic analyses revealed molecular changes along the selection process: these were more numerous in ISC1 than in the CG. Altogether these observations led to the hypothesis that CG parasites are preadapted to SbIII resistance. This hypothesis was experimentally confirmed by showing that only wild-type CG strains could survive a direct exposure to the maximal concentration of SbIII. The main driver of this preadaptation was shown to be MRPA, a gene involved in SbIII sequestration and amplified in an intrachromosomal amplicon in all CG strains characterized so far. This amplicon emerged around 1850 in the CG, well before the implementation of antimonials for VL chemotherapy, and we discuss here several hypotheses of selective pressure that could have accompanied its emergence. IMPORTANCE The “antibiotic resistance crisis” is a major challenge for scientists and medical professionals. This steady rise in drug-resistant pathogens also extends to parasitic diseases, with antimony being the first anti-Leishmania drug that fell in the Indian subcontinent (ISC). Leishmaniasis is a major but neglected infectious disease with limited therapeutic options. Therefore, understanding how parasites became resistant to antimonials is of commanding importance. In this study, we experimentally characterized the dynamics of this resistance acquisition and show for the first time that some Leishmania populations of the ISC were preadapted to antimony resistance, likely driven by environmental factors or by drugs used in the 19th century
    corecore