160 research outputs found

    Dissolved organic matter uptake by <i>Trichodesmium </i>in the Southwest Pacific

    Get PDF
    International audienceThe globally distributed diazotroph Trichodesmium contributes importantly to nitrogen inputs in the oligotrophic oceans. Sites of dissolved organic matter (DOM) accumulation could promote the mixotrophic nutrition of Trichodesmium when inorganic nutrients are scarce. Nano-scale secondary ion mass spectrometry (nanoSIMS) analyses of individual trichomes sampled in the South Pacific Ocean, showed significant 13 C-enrichments after incubation with either 13 C-labeled carbohydrates or amino acids. These results suggest that DOM could be directly taken up by Trichodesmium or primarily consumed by heterotrophic epibiont bacteria that ultimately transfer reduced DOM compounds to their host trichomes. Although the addition of carbohydrates or amino acids did not significantly affect bulk N 2 fixation rates, N 2 fixation was enhanced by amino acids in individual colonies of Trichodesmium. We discuss the ecological advantages of DOM use by Trichodesmium as an alternative to autotrophic nutrition in oligotrophic open ocean waters. Nitrogen is recognized as the proximate limiting nutrient for primary production in the oceans 1. The oceanic nitrogen reservoir is controlled by a balance between fixed nitrogen gains (via dinitrogen-N 2-fixation) and losses (denitrification) 2. While global nitrogen budget estimations determine that denitrification exceeds N 2 fixation considerably 3 , recent improvements in the 15 N 2 isotope tracer method used to measure biological N 2 fixation have evidenced that formerly published rates could be underestimated by a factor of ~2 to 6 4–8 , and thus could be high enough to balance denitrification on a global basis. However, the variability among N 2 fixation rates obtained when using the two different methods (adding 15 N 2 as a bubble or pre-dissolved in seawater) 4,9 can be high 7 and at times not significant 10–12. A mechanistic understanding of which factors determine the degree of discrepancy between the two 15 N 2 methods is currently lacking. Moreover, marine pelagic N 2 fixation had been long attributed to the tropical and subtropical latitudinal bands of the ocean, e.g. 13 , while other ecological niches such as high latitude waters, oxygen minimum zones and the vast dark realm of the ocean (below the euphotic zone) are now recognized as active N 2 fixation sites 14–16. It is likely that the inclusion of these previously unaccounted for active N 2 fixation sites will be more important in equilibrating denitrification and N 2 fixation rates than the underestimation of rates due to discrepancies between isotopic tracer methods. In chronically stratified open ocean regions such as the vast subtropical gyres, primary production depends largely on external fixed nitrogen inputs provided by N 2 fixation performed by prokaryotes termed 'diazotrophs'. Diazotrophic cyanobacteria are photosynthetic prokaryotes (with the exception of the photoheterotrophic Candidatus Atelocyanobacterium thalassa which cannot photosynthesize) 17 that thrive in oligotrophic tropical and subtropical waters of the oceans where they provide an important source of fixed nitrogen for other phyto-plankton 13. Despite being classically regarded as photoautotrophs, some unicellular diazotrophic cyanobacteria like Cyanothece are able to take up dissolved organic matter (DOM) molecules photoheterotrophically 18. As well, various filamentous diazotrophic cyanobacteria such as Anabaena bear genes for amino acids transport, which may be used to incorporate amino acids from the in situ DOM pool, or to assimilate amino acids self-produced during diazotrophic growth 19

    Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean

    Get PDF
    International audienceDue to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years has shown a decrease in the dissolved inorganic phosphate (DIP) pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2) fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise), we present data on DIP, dissolved organic phosphate (DOP) and particulate phosphate (PP) pools along with DIP turnover times (TDIP) and N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L-1 and T DIP was more than 6 months in the centre of the gyre; DIP availability remained largely above the level required for phosphate limitation to occur and the absence of Trichodesmium spp and low nitrogen fixation rates were likely to be controlled by other factors such as temperature or iron availability. This contrasts with recent observations in the North Pacific Ocean at the ALOHA station and in the western Pacific Ocean at the same latitude (DIAPALIS cruises) where lower DIP concentrations (-1) and T DIP 2 fixation rates and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated

    Illusory perceptions of space and time preserve cross-saccadic perceptual continuity

    Get PDF
    When voluntary saccadic eye movements are made to a silently ticking clock, observers sometimes think that the second hand takes longer than normal to move to its next position. For a short period, the clock appears to have stopped (chronostasis). Here we show that the illusion occurs because the brain extends the percept of the saccadic target backwards in time to just before the onset of the saccade. This occurs every time we move the eyes but it is only perceived when an external time reference alerts us to the phenomenon. The illusion does not seem to depend on the shift of spatial attention that accompanies the saccade. However, if the target is moved unpredictably during the saccade, breaking perception of the target's spatial continuity, then the illusion disappears. We suggest that temporal extension of the target's percept is one of the mechanisms that 'fill in' the perceptual 'gap' during saccadic suppression. The effect is critically linked to perceptual mechanisms that identify a target's spatial stability

    Rapid enhancement of touch from non-informative vision of the hand

    Get PDF
    Processing in one sensory modality may modulate processing in another. Here we investigate how simply viewing the hand can influence the sense of touch. Previous studies showed that non-informative vision of the hand enhances tactile acuity, relative to viewing an object at the same location. However, it remains unclear whether this Visual Enhancement of Touch (VET) involves a phasic enhancement of tactile processing circuits triggered by the visual event of seeing the hand, or more prolonged, tonic neuroplastic changes, such as recruitment of additional cortical areas for tactile processing. We recorded somatosensory evoked potentials (SEPs) evoked by electrical stimulation of the right middle finger, both before and shortly after viewing either the right hand, or a neutral object presented via a mirror. Crucially, and unlike prior studies, our visual exposures were unpredictable and brief, in addition to being non-informative about touch. Viewing the hand, as opposed to viewing an object, enhanced tactile spatial discrimination measured using grating orientation judgements, and also the P50 SEP component, which has been linked to early somatosensory cortical processing. This was a trial-specific, phasic effect, occurring within a few seconds of each visual onset, rather than an accumulating, tonic effect. Thus, somatosensory cortical modulation can be triggered even by a brief, non-informative glimpse of one’s hand. Such rapid multisensory modulation reveals novel aspects of the specialised brain systems for functionally representing the body

    Influence of hand position on the near-effect in 3D attention

    Get PDF
    Voluntary reorienting of attention in real depth situations is characterized by an attentional bias to locations near the viewer once attention is deployed to a spatially cued object in depth. Previously this effect (initially referred to as the ‘near-effect’) was attributed to access of a 3D viewer-centred spatial representation for guiding attention in 3D space. The aim of this study was to investigate whether the near-bias could have been associated with the position of the response-hand, always near the viewer in previous studies investigating endogenous attentional shifts in real depth. In Experiment 1, the response-hand was placed at either the near or far target depth in a depth cueing task. Placing the response-hand at the far target depth abolished the near-effect, but failed to bias spatial attention to the far location. Experiment 2 showed that the response-hand effect was not modulated by the presence of an additional passive hand, whereas Experiment 3 confirmed that attentional prioritization of the passive hand was not masked by the influence of the responding hand on spatial attention in Experiment 2. The pattern of results is most consistent with the idea that response preparation can modulate spatial attention within a 3D viewer-centred spatial representation

    Spatial analysis of the glioblastoma proteome reveals specific molecular signatures and markers of survival

    Full text link
    Molecular heterogeneity is a key feature of glioblastoma that impedes patient stratification and leads to large discrepancies in mean patient survival. Here, we analyze a cohort of 96 glioblastoma patients with survival ranging from a few months to over 4 years. 46 tumors are analyzed by mass spectrometry-based spatially-resolved proteomics guided by mass spectrometry imaging. Integration of protein expression and clinical information highlights three molecular groups associated with immune, neurogenesis, and tumorigenesis signatures with high intra-tumoral heterogeneity. Furthermore, a set of proteins originating from reference and alternative ORFs is found to be statistically significant based on patient survival times. Among these proteins, a 5-protein signature is associated with survival. The expression of these 5 proteins is validated by immunofluorescence on an additional cohort of 50 patients. Overall, our work characterizes distinct molecular regions within glioblastoma tissues based on protein expression, which may help guide glioblastoma prognosis and improve current glioblastoma classification

    Systemic Steroids in Preventing Bronchopulmonary Dysplasia (BPD): Neurodevelopmental Outcome According to the Risk of BPD in the EPICE Cohort

    Get PDF
    Background: Postnatal steroids (PNS) have been used to prevent bronchopulmonary dysplasia (BPD) in preterm infants but have potential adverse effects on neurodevelopment. These effects might be modulated by their risk of BPD. We aimed to compare patients’ neurodevelopment with PNS treatment according to their risk of BPD in a European cohort. Methods: We developed a prediction model for BPD to classify infants born between 24 + 0 and 29 + 6 weeks of gestation in three groups and compared patients’ neurological outcome at two years of corrected age using the propensity score (PS) method. Results: Of 3662 neonates included in the analysis, 901 (24.6%) were diagnosed with BPD. Our prediction model for BPD had an area under the ROC curve of 0.82. In the group with the highest risk of developing BPD, PNS were associated with an increased risk of gross motor impairment: OR of 1.95 after IPTW adjustment (95% CI 1.18 to 3.24, p = 0.010). This difference existed regardless of the type of steroid used. However, there was an increased risk of cognitive anomalies for patients treated with dexa/betamethasone that was no longer observed with hydrocortisone. Conclusions: This study suggests that PNS might be associated with an increased risk of gross motor impairment regardless of the group risk for BPD. Further randomised controlled trials exploring the use of PNS to prevent BPD should include a risk-based evaluation of neurodevelopmental outcomes. This observation still needs to be confirmed in a randomised controlled trial

    Comparison of uniaxial and triaxial accelerometry in the assessment of physical activity among adolescents under free-living conditions: the HELENA study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different types of devices are available and the choice about which to use depends on various factors: cost, physical characteristics, performance, and the validity and intra- and interinstrument reliability. Given the large number of studies that have used uniaxial or triaxial devices, it is of interest to know whether the different devices give similar information about PA levels and patterns. The aim of this study was to compare physical activity (PA) levels and patterns obtained simultaneously by triaxial accelerometry and uniaxial accelerometry in adolescents in free-living conditions.</p> <p>Methods</p> <p>Sixty-two participants, aged 13-16 years, were recruited in this ancillary study, which is a part of the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA). All participants wore a uniaxial accelerometer (ActiGraph GT1M<sup>Âź</sup>, Pensacola, FL) and a triaxial accelerometer (RT3<sup>Âź</sup>, Stayhealthy, Monrovia, CA) simultaneously for 7 days. The patterns were calculated by converting accelerometer data output as a percentage of time spent at sedentary, light, moderate, and vigorous PA per day. Analysis of output data from the two accelerometers were assessed by two different tests: Equivalence Test and Bland & Altman method.</p> <p>Results</p> <p>The concordance correlation coefficient between the data from the triaxial accelerometer and uniaxial accelerometer at each intensity level was superior to 0.95. The ANOVA test showed a significant difference for the first three lower intensities while no significant difference was found for vigorous intensity. The difference between data obtained with the triaxial accelerometer and the uniaxial monitor never exceeded 2.1% and decreased as PA level increased. The Bland & Altman method showed good agreement between data obtained between the both accelerometers (<it>p </it>< 0.05).</p> <p>Conclusions</p> <p>Uniaxial and triaxial accelerometers do not differ in their measurement of PA in population studies, and either could be used in such studies.</p
    • 

    corecore