94 research outputs found

    Genetic diversity and dynamics of the Noir Marron settlement in French Guyana : A study combining mitochondrial DNA, Y chromosome and HTLV-1 genotyping [Abstract]

    No full text
    The Noir Marron are the direct descendants of thousands of African slaves deported to the Guyanas during the Atlantic Slave Trade and later escaped mainly from Dutch colonial plantations. Six ethnic groups are officially recognized, four of which are located in French Guyana: the Aluku, the Ndjuka, the Saramaka, and the Paramaka. The aim of this study was: (1) to determine the Noir Marron settlement through genetic exchanges with other communities such as Amerindians and Europeans; (2) to retrace their origins in Africa. Buffy-coat DNA from 142 Noir Marron, currently living in French Guyana, were analyzed using mtDNA (typing of SNP coding regions and sequencing of HVSI/II) and Y chromosomes (typing STR and SNPs) to define their genetic profile. Results were compared to an African database composed by published data, updated with genotypes of 82 Fon from Benin, and 128 Ahizi and 63 Yacouba from the Ivory-Coast obtained in this study for the same markers. Furthermore, the determination of the genomic subtype of HTLV-1 strains (env gp21 and LTR regions), which can be used as a marker of migration of infected populations, was performed for samples from 23 HTLV-1 infected Noir Marron and compared with the corresponding database. MtDNA profiles showed a high haplotype diversity, in which 99% of samples belonged to the major haplogroup L, frequent in Africa. Each haplotype was largely represented on the West African coast, but notably higher homologies were obtained with the samples present in the Gulf of Guinea. Y Chromosome analysis revealed the same pattern, i.e. a conservation of the African contribution to the Noir Marron genetic profile, with 98% of haplotypes belonging to the major haplogroup E1b1a, frequent in West Africa. The genetic diversity was higher than those observed in African populations, proving the large Noir Marron’s fatherland, but a predominant identity in the Gulf of Guinea can be suggested. Concerning HTLV-1 genotyping, all the Noir Marron strains belonged to the large Cosmopolitan A subtype. However, among them 17/23 (74%) clustered with the West African clade comprizing samples originating from Ivory-Coast, Ghana, Burkina-Fasso and Senegal, while 3 others clustered in the Trans-Sahelian clade and the remaining 3 were similar to strains found in individuals in South America. Through the combined analyses of three approaches, we have provided a conclusive image of the genetic profile of the Noir Marron communities studied. The high degree of preservation of the African gene pool contradicts the expected gene flow that would correspond to the major cultural exchanges observed between Noir Marron, Europeans and Amerindians. Marital practices and historical events could explain these observations. Corresponding to historical and cultural data, the origin of the ethnic groups is widely dispatched throughout West Africa. However, all results converge to suggest an individualization from a major birthplace in the Gulf of Guinea

    Human Genomic Diversity Where the Mediterranean Joins the Atlantic

    Get PDF
    Throughout the past few years, a lively debate emerged about the timing and magnitude of the human migrations between the Iberian Peninsula and the Maghreb. Several pieces of evidence, including archaeological, anthropological, historical, and genetic data, have pointed to a complex and intermingled evolutionary history in the western Mediterranean area. To study to what extent connections across the Strait of Gibraltar and surrounding areas have shaped the present-day genomic diversity of its populations, we have performed a screening of 2.5 million single-nucleotide polymorphisms in 142 samples from southern Spain, southern Portugal, and Morocco. We built comprehensive data sets of the studied area and we implemented multistep bioinformatic approaches to assess population structure, demographic histories, and admixture dynamics. Both local and global ancestry inference showed an internal substructure in the Iberian Peninsula, mainly linked to a differential African ancestry. Western Iberia, from southern Portugal to Galicia, constituted an independent cluster within Iberia characterized by an enriched African genomic input. Migration time modeling showed recent historic dates for the admixture events occurring both in Iberia and in the North of Africa. However, an integrative vision of both paleogenomic and modern DNA data allowed us to detect chronological transitions and population turnovers that could be the result of transcontinental migrations dating back from Neolithic times. The present contribution aimed to fill the gaps in the modern human genomic record of a key geographic area, where the Mediterranean and the Atlantic come together

    The peopling of the last Green Sahara revealed by high-coverage resequencing of trans-Saharan patrilineages

    Get PDF
    Little is known about the peopling of the Sahara during the Holocene climatic optimum, when the desert was replaced by a fertile environment

    GM and KM immunoglobulin allotypes in the Galician population: new insights into the peopling of the Iberian Peninsula

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current genetic structure of Iberian populations has presumably been affected by the complex orography of its territory, the different people and civilizations that settled there, its ancient and complex history, the diverse and persistent sociocultural patterns in its different regions, and also by the effects of the Iberian Peninsula representing a refugium area after the last glacial maximum. This paper presents the first data on <it>GM </it>and <it>KM </it>immunoglobulin allotypes in the Galician population and, thus, provides further insights into the extent of genetic diversity in populations settled in the geographic extremes of the Cantabrian region of northern Spain. Furthermore, the genetic relationships of Galicians with other European populations have been investigated.</p> <p>Results</p> <p>Galician population shows a genetic profile for <it>GM </it>haplotypes that is defined by the high presence of the European Mediterranean <it>GM</it>*<it>3 23 5* </it>haplotype, and the relatively high incidence of the African marker <it>GM*1,17 23' 5*</it>. Data based on comparisons between Galician and other Spanish populations (mainly from the north of the peninsula) reveal a poor correlation between geographic and genetic distances (<it>r </it>= 0.30, <it>P </it>= 0.105), a noticeable but variable genetic distances between Galician and Basque subpopulations, and a rather close genetic affinity between Galicia and Valencia, populations which are geographically separated by a long distance and have quite dissimilar cultures and histories. Interestingly, Galicia occupies a central position in the European genetic map, despite being geographically placed at one extreme of the European continent, while displaying a close genetic proximity to Portugal, a finding that is consistent with their shared histories over centuries.</p> <p>Conclusion</p> <p>These findings suggest that the population of Galicia is the result of a relatively balanced mixture of European populations or of the ancestral populations that gave rise to them. This would support the importance of the migratory movements that have taken place in Europe over the course of recent human history and their effects on the European genetic landscape.</p

    Complete mitochondrial DNA sequences provide new insights into the Polynesian motif and the peopling of Madagascar

    Get PDF
    More than a decade of mitochondrial DNA (mtDNA) studies have given the 'Polynesian motif' renowned status as a marker for tracing the late-Holocene expansion of Austronesian speaking populations. Despite considerable research on the Polynesian motif in Oceania, there has been little equivalent work on the western edge of its expansion - leaving major issues unresolved regarding the motif's evolutionary history. This has also led to considerable uncertainty regarding the settlement of Madagascar. In this study, we assess mtDNA variation in 266 individuals from three Malagasy ethnic groups: the Mikea, Vezo, and Merina. Complete mtDNA genome sequencing reveals a new variant of the Polynesian motif in Madagascar; two coding region mutations define a Malagasy-specific sub-branch. This newly defined 'Malagasy motif' occurs at high frequency in all three ethnic groups (13-50%), and its phylogenetic position, geographic distribution, and estimated age all support a recent origin, but without conclusively identifying a specific source region. Nevertheless, the haplotype's limited diversity, similar to those of other mtDNA haplogroups found in our Malagasy groups, best supports a small number of initial settlers arriving to Madagascar through the same migratory process. Finally, the discovery of this lineage provides a set of new polymorphic positions to help localize the Austronesian ancestors of the Malagasy, as well as uncover the origin and evolution of the Polynesian motif itself

    Early holocenic and historic mtDNA african signatures in the iberian peninsula: The andalusian region as a paradigm

    Get PDF
    Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.Financial support was provided by the Spanish Ministry of Competitiveness through Research Project CGL2010-15191/BOS granted to RC and International Mobility Program Acciones Integradas Hispano-Portuguesas (PRI-AIBPT-2011-1004) granted to RC (Spain) and LP (Portugal) (http://www.mineco.gob.es/portal/site/mineco/idi). The E.C. Sixth Framework Programme under Contract n° ERAS-CT-2003-980409 (EUROCORES project of the European Science Foundation) also provided financial support to JMD for North African population research. CLH has a predoctoral fellowship granted by Complutense University. PS is supported by FCT Investigator Programme (IF/01641/2013). IPATIMUP (https://www.ipatimup.pt/) integrates the Instituto the Investigação em Saúde (i3S) Research Unit, which is partially supported by FCT, the Portuguese Foundation for Science and Technology. IPATIMUP is funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and National Funds through the FCT - under the project PEst-C/SAU/LA0003/2013. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Gm and Km immunoglobulin allotypes in Sicily

    No full text

    BamHI and SacI RFLPs of the human immunoglobulin IGHG genes with reference to the Gm polymorphism in African people. Evidence for a major polymorphism.

    No full text
    International audienceIn this paper, we extend the study of the IGHG gene RFLPs in black African persons and in some other individuals characterized by a Negroid admixture. We demonstrate a polymorphism that is much more important in black Africans, than in Caucasoids, mainly for the IGHG3 and G1 genes, the most 5' members of the IGHG multigene family. These genes encode for the IgG3 and IgG1 subclasses, which are of crucial biological importance
    • …
    corecore