69 research outputs found

    West Nile Virus Vaccination Protects against Usutu Virus Disease in Mice

    Get PDF
    West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses that can cause neuroinvasive disease in humans. WNV and USUV circulate in both Africa and Europe and are closely related. Due to antigenic similarity, WNV-specific antibodies and USUV-specific antibodies have the potential to bind heterologous viruses; however, it is unclear whether this interaction may offer protection against infection. To investigate how prior WNV exposure would influence USUV infection, we used an attenuated WNV vaccine that contains the surface proteins of WNV in the backbone of a dengue virus 2 vaccine strain and protects against WNV disease. We hypothesized that vaccination with this attenuated WNV vaccine would protect against USUV infection. Neutralizing responses against WNV and USUV were measured in vitro using sera following vaccination. Sera from vaccinated CD-1 and Ifnar1-/- mice cross-neutralized with WNV and USUV. All mice were then subsequently challenged with an African or European USUV strain. In CD-1 mice, there was no difference in USUV titers between vaccinated and mock-vaccinated mice. However, in the Ifnar1-/- model, vaccinated mice had significantly higher survival rates and significantly lower USUV viremia compared to mock-vaccinated mice. Our results indicate that exposure to an attenuated form of WNV protects against severe USUV disease in mice and elicits a neutralizing response to both WNV and USUV. Future studies will investigate the immune mechanisms responsible for the protection against USUV infection induced by WNV vaccination, providing critical insight that will be essential for USUV and WNV vaccine development.Funding for this project was provided by NIH NIAID R21 AI53988. Support was also provided by the Virginia–Maryland College of Veterinary Medicine IRC.S

    Pathogenesis and shedding of Usutu virus in juvenile chickens

    Get PDF
    Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.This work was supported by National Science Foundation [grant number: 1813011]; Virginia Polytechnic Institute and State University [grant number: Data and Decisions Proposal, VMCVM Internal Research Competition].S

    Unbiased Metagenomic Sequencing for Pediatric Meningitis in Bangladesh Reveals Neuroinvasive Chikungunya Virus Outbreak and Other Unrealized Pathogens.

    Get PDF
    The burden of meningitis in low-and-middle-income countries remains significant, but the infectious causes remain largely unknown, impeding institution of evidence-based treatment and prevention decisions. We conducted a validation and application study of unbiased metagenomic next-generation sequencing (mNGS) to elucidate etiologies of meningitis in Bangladesh. This RNA mNGS study was performed on cerebrospinal fluid (CSF) specimens from patients admitted in the largest pediatric hospital, a World Health Organization sentinel site, with known neurologic infections (n = 36), with idiopathic meningitis (n = 25), and with no infection (n = 30), and six environmental samples, collected between 2012 and 2018. We used the IDseq bioinformatics pipeline and machine learning to identify potentially pathogenic microbes, which we then confirmed orthogonally and followed up through phone/home visits. In samples with known etiology and without infections, there was 83% concordance between mNGS and conventional testing. In idiopathic cases, mNGS identified a potential bacterial or viral etiology in 40%. There were three instances of neuroinvasive Chikungunya virus (CHIKV), whose genomes were >99% identical to each other and to a Bangladeshi strain only previously recognized to cause febrile illness in 2017. CHIKV-specific qPCR of all remaining stored CSF samples from children who presented with idiopathic meningitis in 2017 (n = 472) revealed 17 additional CHIKV meningitis cases, exposing an unrecognized meningitis outbreak. Orthogonal molecular confirmation, case-based clinical data, and patient follow-up substantiated the findings. Case-control CSF mNGS surveys can complement conventional diagnostic methods to identify etiologies of meningitis, conduct surveillance, and predict outbreaks. The improved patient- and population-level data can inform evidence-based policy decisions.IMPORTANCE Globally, there are an estimated 10.6 million cases of meningitis and 288,000 deaths every year, with the vast majority occurring in low- and middle-income countries. In addition, many survivors suffer from long-term neurological sequelae. Most laboratories assay only for common bacterial etiologies using culture and directed PCR, and the majority of meningitis cases lack microbiological diagnoses, impeding institution of evidence-based treatment and prevention strategies. We report here the results of a validation and application study of using unbiased metagenomic sequencing to determine etiologies of idiopathic (of unknown cause) cases. This included CSF from patients with known neurologic infections, with idiopathic meningitis, and without infection admitted in the largest children's hospital of Bangladesh and environmental samples. Using mNGS and machine learning, we identified and confirmed an etiology (viral or bacterial) in 40% of idiopathic cases. We detected three instances of Chikungunya virus (CHIKV) that were >99% identical to each other and to a strain previously recognized to cause systemic illness only in 2017. CHIKV qPCR of all remaining stored 472 CSF samples from children who presented with idiopathic meningitis in 2017 at the same hospital uncovered an unrecognized CHIKV meningitis outbreak. CSF mNGS can complement conventional diagnostic methods to identify etiologies of meningitis, and the improved patient- and population-level data can inform better policy decisions

    Genetic Diversity of Newcastle Disease Virus Involved in the 2021 Outbreaks in Backyard Poultry Farms in Tanzania

    Get PDF
    Newcastle disease virus is a significant avian pathogen with the potential to decimate poultry populations all over the world and cause enormous economic losses. Distinct NDV genotypes are currently causing outbreaks worldwide. Due to the high genetic diversity of NDV, virulent strains that may result in a lack of vaccine protection are more likely to emerge and ultimately cause larger epidemics with massive economic losses. Thus, a more comprehensive understanding of the circulating NDV genotypes is critical to reduce Newcastle disease (ND) burden. In this study, NDV strains were isolated and characterized from backyard poultry farms from Tanzania, East Africa in 2021. Reverse-transcription polymerase chain reaction (RT-PCR) based on fusion (F) gene amplification was conducted on 79 cloacal or tracheal swabs collected from chickens during a suspected ND outbreak. Our results revealed that 50 samples out 79 (50/79; 63.3%) were NDV-positive. Sequencing and phylogenetic analyses of the selected NDV isolates showed that 39 isolates belonged to subgenotype VII.2 and only one isolate belonged to subgenotype XIII.1.1. Nucleotide sequences of the NDV F genes from Tanzania were closely related to recent NDV isolates circulating in southern Africa, suggesting that subgenotype VII.2 is the predominant subgenotype throughout Tanzania and southern Africa. Our data confirm the circulation of two NDV subgenotypes in Tanzania, providing important information to design genotype-matched vaccines and to aid ND surveillance. Furthermore, these results highlight the possibility of the spread and emergence of new NDV subgenotypes with the potential of causing future ND epizootics

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
    corecore