24 research outputs found

    Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts

    Get PDF
    Sustainably managed non-native trees deliver economic and societal benefits with limited risk of spread to adjoining areas. However, some plantations have launched invasions that cause substantial damage to biodiversity and ecosystem services, while others pose substantial threats of causing such impacts. The challenge is to maximise the benefits of non-native trees, while minimising negative impacts and preserving future benefits and options. A workshop was held in 2019 to develop global guidelines for the sustainable use of non-native trees, using the Council of Europe – Bern Convention Code of Conduct on Invasive Alien Trees as a starting point. The global guidelines consist of eight recommendations: 1) Use native trees, or non-invasive non-native trees, in preference to invasive non-native trees; 2) Be aware of and comply with international, national, and regional regulations concerning non-native trees; 3) Be aware of the risk of invasion and consider global change trends; 4) Design and adopt tailored practices for plantation site selection and silvicultural management; 5) Promote and implement early detection and rapid response programmes; 6) Design and adopt tailored practices for invasive non-native tree control, habitat restoration, and for dealing with highly modified ecosystems; 7) Engage with stakeholders on the risks posed by invasive non-native trees, the impacts caused, and the options for management; and 8) Develop and support global networks, collaborative research, and information sharing on native and non-native trees. The global guidelines are a first step towards building global consensus on the precautions that should be taken when introducing and planting non-native trees. They are voluntary and are intended to complement statutory requirements under international and national legislation. The application of the global guidelines and the achievement of their goals will help to conserve forest biodiversity, ensure sustainable forestry, and contribute to the achievement of several Sustainable Development Goals of the United Nations linked with forest biodiversity

    Stakeholders' views on the global guidelines for the sustainable use of non‐native trees

    Get PDF
    A large number of non‐native trees (NNTs) have been introduced globally and widely planted, contributing significantly to the world's economy. Although some of these species present a limited risk of spreading beyond their planting sites, a growing number of NNTs are spreading and becoming invasive leading to diverse negative impacts on biodiversity, ecosystem functions and human well‐being. To help minimize the negative impacts and maximize the economic benefits of NNTs, Brundu et al. developed eight guidelines for the sustainable use of NNTs globally—the Global Guidelines for the Use of NNTs (GG‐NNTs). Here, we used an online survey to assess perceptions of key stakeholders towards NNTs, and explore their knowledge of and compliance with the GG‐NNTs. Our results show that stakeholders are generally aware that NNTs can provide benefits and cause negative impacts, often simultaneously and they consider that their organization complies with existing regulations and voluntary agreements concerning NNTs. However, they are not aware of or do not apply most of the eight recommendations included in the GG‐NNTs. We conclude that effectively managing invasions linked to NNTs requires both more communication efforts using an array of channels for improving stakeholder awareness and implementation of simple measures to reduce NNT impacts (e.g. via GG‐NNTs), and a deeper understanding of the barriers and reluctance of stakeholders to manage NNT invasions. Read the free Plain Language Summary for this article on the Journal blog

    Adoption, use and perception of Australian acacias around the world

    No full text
    Aim To examine the different uses and perceptions of introduced Australian acacias (wattles; Acacia subgenus Phyllodineae) by rural households and communities. Location Eighteen landscape-scale case studies around the world, in Vietnam, India, Réunion, Madagascar, South Africa, Congo, Niger, Ethiopia, Israel, France, Portugal, Brazil, Chile, Dominican Republic and Hawai'i. Methods Qualitative comparison of case studies, based on questionnaire sent to network of acacia researchers. Information based on individual knowledge of local experts, published and unpublished sources. Results We propose a conceptual model to explain current uses and perceptions of introduced acacias. It highlights historically and geographically contingent processes, including economic development, environmental discourses, political context, and local or regional needs. Four main groupings of case studies were united by similar patterns: (1) poor communities benefiting from targeted agroforestry projects; (2) places where residents, generally poor, take advantage of a valuable resource already present in their landscape via plantation and/or invasion; (3) regions of small and mid-scale tree farmers participating in the forestry industry; and (4) a number of high-income communities dealing with the legacies of former or niche use of introduced acacia in a context of increased concern over biodiversity and ecosystem services. Main conclusions Economic conditions play a key role shaping acacia use. Poorer communities rely strongly on acacias (often in, or escaped from, formal plantations) for household needs and, sometimes, for income. Middle-income regions more typically host private farm investments in acacia woodlots for commercialization. Efforts at control of invasive acacias must take care to not adversely impact poor dependent communities. © 2011 Blackwell Publishing Ltd.Articl

    Risk assessment, eradication, and biological control: Global efforts to limit Australian acacia invasions

    No full text
    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new agents (notably vegetative feeders) can help mitigate existing widespread invasions. Trans-boundary sharing of information will assist efforts to limit future invasions, in particular, management strategies need to be better evaluated, monitored, published and publicised so that global best-practice procedures can be developed. © 2011 Blackwell Publishing Ltd.Revie

    Risk assessment, eradication, and biological control: Global efforts to limit Australian acacia invasions

    No full text
    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new agents (notably vegetative feeders) can help mitigate existing widespread invasions. Trans-boundary sharing of information will assist efforts to limit future invasions, in particular, management strategies need to be better evaluated, monitored, published and publicised so that global best-practice procedures can be developed. © 2011 Blackwell Publishing Ltd

    Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts

    Get PDF
    Sustainably managed non-native trees deliver economic and societal benefits with limited risk of spread to adjoining areas. However, some plantations have launched invasions that cause substantial damage to biodiversity and ecosystem services, while others pose substantial threats of causing such impacts. The challenge is to maximise the benefits of non-native trees, while minimising negative impacts and preserving future benefits and options. A workshop was held in 2019 to develop global guidelines for the sustainable use of non-native trees, using the Council of Europe % Bern Convention Code of Conduct on Invasive Alien Trees as a starting point. The global guidelines consist of eight recommendations: 1) Use native trees, or non-invasive non-native trees, in preference to invasive non-native trees2) Be aware of and comply with international, national, and regional regulations concerning non-native trees3) Be aware of the risk of invasion and consider global change trends4) Design and adopt tailored practices for plantation site selection and silvicultural management5) Promote and implement early detection and rapid response programmes6) Design and adopt tailored practices for invasive non-native tree control, habitat restoration, and for dealing with highly modified ecosystems7) Engage with stakeholders on the risks posed by invasive non-native trees, the impacts caused, and the options for managementand 8) Develop and support global networks, collaborative research, and information sharing on native and non-native trees. The global guidelines are a first step towards building global consensus on the precautions that should be taken when introducing and planting non-native trees. They are voluntary and are intended to complement statutory requirements under international and national legislation. The application of the global guidelines and the achievement of their goals will help to conserve forest biodiversity, ensure sustainable forestry, and contribute to the achievement of several Sustainable Development Goals of the United Nations linked with forest biodiversity

    Seed germination traits of Ailanthus altissima

    No full text
    Invasion of alien plant species (IAS) represents a serious environmental problem, particularly in Europe, where it mainly pertains to urban areas. Seed germination traits contribute to clarification of invasion dynamics. The objective of this research was to analyze how different light conditions (i.e., 12-hr light/12-hr darkness and continuous darkness) and temperature regimes (i.e., 15/6°C, 20/10°C and 30/20°C) trigger seed germination of Ailanthus altissima (AA), Phytolacca americana (PA) and Robinia pseudoacacia (RP). The relationship between seed germination and seed morphometric traits was also analyzed. Our findings highlight that temperature rather than light was the main environmental factor affecting germination. RP germinated at all tested temperatures, whereas at 15/6°C seeds of AA and PA showed physiological dormancy. RP had a higher germination capacity at a lower temperature, unlike AA and PA, which performed better at the highest temperatures. Light had a minor role in seed germination of the three species. Light promoted germination only for seeds of PA, and final germination percentage was 1.5-fold higher in light than in continuous darkness. Seed morphometric traits (thickness [T], area [A] and volume [V]) had a significant role in explaining germination trait variations. The results highlight the importance of increasing our knowledge on seed germination requirements to predict future invasiveness trends. The increase in global temperature could further advantage AA and PA in terms of germinated seeds, as well as RP by enhancing the germination velocity, therefore compensating for a lower germination percentage of this species at the highest temperatures
    corecore