564 research outputs found

    General practitioners' views of pharmacists' current and potential contributions to medication review and prescribing in New Zealand

    Get PDF
    INTRODUCTION: Internationally, non-medical practitioners are increasingly involved in tasks traditionally undertaken by general practitioners (GPs), such as medication review and prescribing. This study aims to evaluate GPs' perceptions of pharmacists' contributions to those services. METHODS: Semi-structured interviews were carried out in two localities with GPs whose patients had and had not undergone a pharmacist-led adherence support Medication Use Review (MUR). GPs were asked their opinions of pharmacists' provision of MUR, clinical medication review and prescribing. Data were analysed thematically using NVivo 8 and grouped by strengths, weaknesses, opportunities and threats (SWOT) category. FINDINGS: Eighteen GPs were interviewed. GPs mentioned their own skills, training and knowledge of clinical conditions. These were considered GPs' major strengths. GPs' perceived weaknesses were their time constraints and heavy workloads. GPs thought pharmacists' strengths were their knowledge of pharmacology and having more time for in-depth medication review than GPs. Nevertheless, GPs felt pharmacist-led medication reviews might confuse patients, and increase GP workloads. GPs were concerned that pharmacist prescribing might include pharmacists making a diagnosis. This is not the proposed model for New Zealand. In general, GPs were more accepting of pharmacists providing medication reviews than of pharmacist prescribing, unless appropriate controls, close collaboration and co-location of services took place. CONCLUSION: GPs perceived their own skills were well suited to reviewing medication and prescribing, but thought pharmacists might also have strengths and skills in these areas. In future, GPs thought that working together with pharmacists in these services might be possible in a collaborative setting

    Виправте!

    Get PDF
    BACKGROUND: The aim of the current work was to perform a clinical trial simulation (CTS) analysis to optimize a drug-drug interaction (DDI) study of vincristine in children who also received azole antifungals, taking into account challenges of conducting clinical trials in this population, and, to provide a motivating example of the application of CTS in the design of pediatric oncology clinical trials. PROCEDURE: A pharmacokinetic (PK) model for vincristine in children was used to simulate concentration-time profiles. A continuous model for body surface area versus age was defined based on pediatric growth curves. Informative sampling time windows were derived using D-optimal design. The CTS framework was used to different magnitudes of clearance inhibition (10%, 25%, or 40%), sample size (30-500), the impact of missing samples or sampling occasions, and the age distribution, on the power to detect a significant inhibition effect, and in addition, the relative estimation error (REE) of the interaction effect. RESULTS: A minimum group specific sample size of 38 patients with a total sample size of 150 patients was required to detect a clearance inhibition effect of 40% with 80% power, while in the case of a lower effect of clearance inhibition, a substantially larger sample size was required. However, for the majority of re-estimated drug effects, the inhibition effect could be estimated precisely (REE < 25%) in even smaller sample sizes and with lower effect sizes. CONCLUSION: This work demonstrated the utility of CTS for the evaluation of PK clinical trial designs in the pediatric oncology population

    Safety Profile of L-Arginine Infusion in Moderately Severe Falciparum Malaria

    Get PDF
    BACKGROUND: L-arginine infusion improves endothelial function in malaria but its safety profile has not been described in detail. We assessed clinical symptoms, hemodynamic status and biochemical parameters before and after a single L-arginine infusion in adults with moderately severe malaria. METHODOLOGY AND FINDINGS: In an ascending dose study, adjunctive intravenous L-arginine hydrochloride was infused over 30 minutes in doses of 3 g, 6 g and 12 g to three separate groups of 10 adults hospitalized with moderately severe Plasmodium falciparum malaria in addition to standard quinine therapy. Symptoms, vital signs and selected biochemical measurements were assessed before, during, and for 24 hours after infusion. No new or worsening symptoms developed apart from mild discomfort at the intravenous cannula site in two patients. There was a dose-response relationship between increasing mg/kg dose and the maximum decrease in systolic (ρ = 0.463; Spearman's, p = 0.02) and diastolic blood pressure (r = 0.42; Pearson's, p = 0.02), and with the maximum increment in blood potassium (r = 0.70, p<0.001) and maximum decrement in bicarbonate concentrations (r = 0.53, p = 0.003) and pH (r = 0.48, p = 0.007). At the highest dose (12 g), changes in blood pressure and electrolytes were not clinically significant, with a mean maximum decrease in mean arterial blood pressure of 6 mmHg (range: 0–11; p<0.001), mean maximal increase in potassium of 0.5 mmol/L (range 0.2–0.7 mmol/L; p<0.001), and mean maximal decrease in bicarbonate of 3 mEq/L (range 1–7; p<0.01) without a significant change in pH. There was no significant dose-response relationship with blood phosphate, lactate, anion gap and glucose concentrations. All patients had an uncomplicated clinical recovery. CONCLUSIONS/SIGNIFICANCE: Infusion of up to 12g of intravenous L-arginine hydrochloride over 30 minutes is well tolerated in adults with moderately severe malaria, with no clinically important changes in hemodynamic or biochemical status. Trials of adjunctive L-arginine can be extended to phase 2 studies in severe malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT0014736

    The role of population PK-PD modelling in paediatric clinical research

    Get PDF
    Children differ from adults in their response to drugs. While this may be the result of changes in dose exposure (pharmacokinetics [PK]) and/or exposure response (pharmacodynamics [PD]) relationships, the magnitude of these changes may not be solely reflected by differences in body weight. As a consequence, dosing recommendations empirically derived from adults dosing regimens using linear extrapolations based on body weight, can result in therapeutic failure, occurrence of adverse effect or even fatalities. In order to define rational, patient-tailored dosing schemes, population PK-PD studies in children are needed. For the analysis of the data, population modelling using non-linear mixed effect modelling is the preferred tool since this approach allows for the analysis of sparse and unbalanced datasets. Additionally, it permits the exploration of the influence of different covariates such as body weight and age to explain the variability in drug response. Finally, using this approach, these PK-PD studies can be designed in the most efficient manner in order to obtain the maximum information on the PK-PD parameters with the highest precision. Once a population PK-PD model is developed, internal and external validations should be performed. If the model performs well in these validation procedures, model simulations can be used to define a dosing regimen, which in turn needs to be tested and challenged in a prospective clinical trial. This methodology will improve the efficacy/safety balance of dosing guidelines, which will be of benefit to the individual child

    Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria.

    Get PDF
    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria

    Optimal Dosing of Enoxaparin in Overweight and Obese Children

    Get PDF
    Aim:Current enoxaparin dosing guidelines in children are based on total bodyweight. This is potentially inappropriate in obese children as it may overestimate thedrug clearance. Current evidence suggests that obese children may require lower ini-tial doses of enoxaparin, therefore the aim of this work was to characterise the phar-macokinetics of enoxaparin in obese children and to propose a more appropriatedosing regimen.Methods:Data from 196 unique encounters of 160 children who received enoxa-parin treatment doses were analysed. Enoxaparin concentration was quantified usingthe chromogenic anti factor Xa (anti-Xa) assay. Patients provided a total of 552 anti-Xa samples. Existing published pharmacokinetic (PK) models were fitted and evalu-ated against our dataset using prediction-corrected visual predictive check plots(pcVPCs). A PK model was fitted using a nonlinear mixed-effects modelling approach.The fitted model was used to evaluate the current standard dosing and identify anoptimal dosing regimen for obese children.Results:Published models of enoxaparin pharmacokinetics in children did not capturethe pharmacokinetics of enoxaparin in obese children as shown by pcVPCs. A one-compartment model with linear elimination best described the pharmacokinetics ofenoxaparin. Allometrically scaled fat-free mass with an estimated exponent of 0.712(CI 0.66-0.76) was the most influential covariate on clearance while linear fat-freemass was selected as the covariate on volume. Simulations from the model showedthat fat-free mass-based dosing could achieve the target anti-Xa activity at steadystate in 77.5% and 78.2% of obese and normal-weight children, respectively, com-pared to 65.2% and 75.5% for standard total body weight-based dosing.Conclusions:A population PK model that describes the time course of anti-Xa activ-ity of enoxaparin was developed in a paediatric population. Based on this model, aunified dosing regimen was proposed that will potentially improve the success rate oftarget attainment in overweight/obese patients without the need for patient bodysize categorisation. Therefore, prospective validation of the proposed approach iswarranted

    Phase i trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours

    Get PDF
    BACKGROUND: This phase I dose-finding trial evaluated safety, efficacy and pharmacokinetics of axitinib, a potent and selective secondgeneration inhibitor of vascular endothelial growth factor receptors, combined with platinum doublets in patients with advanced non-small cell lung cancer (NSCLC) and other solid tumours. METHODS: In all, 49 patients received axitinib 5mg twice daily (b.i.d.) with paclitaxel/carboplatin or gemcitabine/cisplatin in 3-week cycles. Following determination of the maximum tolerated dose, a squamous cell NSCLC expansion cohort was enroled and received axitinib 5mg b.i.d. with paclitaxel/carboplatin. RESULTS: Two patients experienced dose-limiting toxicities: febrile neutropenia (n¼1) in the paclitaxel/carboplatin cohort and fatigue (n¼1) in the gemcitabine/cisplatin cohort. Common nonhaematologic treatment-related adverse events were hypertension (36.7%), diarrhoea (34.7%) and fatigue (28.6%). No gradeX3 haemoptysis occurred among 12 patients with squamous cell NSCLC. The objective response rate was 37.0% for patients receiving axitinib/paclitaxel/carboplatin (n¼27) and 23.8% for patients receiving axitinib/gemcitabine/cisplatin (n¼21). Pharmacokinetics of axitinib and chemotherapeutic agents were similar when administered alone or in combination. CONCLUSION: Axitinib 5mg b.i.d. may be combined with standard paclitaxel/carboplatin or gemcitabine/cisplatin regimens without evidence of overt drug–drug interactions. Both combinations demonstrated clinical efficacy and were well tolerated.This study was sponsored by Pfizer Inc. Support was provided in part by National Institutes of Health grant P30 CA006927 to the Fox Chase Cancer Center. We thank the patients who participated in this study and the physicians who referred them, as well as the study coordinators and data managers, Shelley Mayfield and Carol Martins at Pfizer Inc. for support of the study conduct, and Gamal ElSawah, Pfizer Medical Affairs, for his review of the manuscript. Medical writing support was provided by Joanna Bloom, of UBC Scientific Solutions (Southport, CT, USA) and Christine Arris at ACUMED (Tytherington, UK) and was funded by Pfizer In

    An Evaluation of a Factor Xa-Based Clotting Time Test for Enoxaparin: A Proof-of-Concept Study

    Get PDF
    A well-accepted test for monitoring anticoagulation by enoxaparin is not currently available. As inadequate dosing may result in thrombosis or bleeding, a clinical need exists for a suitable test. Previous in silico and in vitro studies have identified factor Xa as an appropriate activating agent, and the phospholipid Actin FS as a cofactor for a Xa clotting time (TenaCT) test. A proof-of-concept study was designed to (1) explore the reproducibility of the TenaCT test and (2) explore factors that could affect the performance of the test. In vitro clotting time tests were carried out using plasma from 20 healthy volunteers. The effect of enoxaparin was determined at concentrations of 0.25, 0.50, and 1.0 IU/mL. Clotting times for the volunteers were significantly prolonged with increasing enoxaparin concentrations. Clotting times were significantly shortened for frozen plasma samples. No significant differences in prolongation of clotting times were observed between male and female volunteers or between the 2 evaluated age groups. The clotting times were consistent between 2 separate occasions. The TenaCT test was able to distinguish between the subtherapeutic and therapeutic concentrations of enoxaparin. Plasma should not be frozen prior to performing the test, without defining a frozen plasma reference range. This study provided proof-of-concept for a Xa-based test that can detect enoxaparin dose effects, but additional studies are needed to further develop the test

    Development of a parsimonious design for optimal classification of exclusive breastfeeding

    Get PDF
    A deuterium oxide dose‐to‐mother (DTM) technique is used to determine if an infant is exclusive breastfeeding (EBF). However, the DTM method is intensive, requiring seven paired mother–infant samples during a 14‐day study period. The purpose of this study was to develop a field‐friendly protocol. Data from 790 mother–infant pairs from nine countries were analyzed using a Markov chain Monte Carlo method with Stan. The data were split into (i) model building (565 pairs) and (ii) design evaluation (225 pairs). EBF classification was based on a previously published cut‐off for nonmilk water intake. Classification based on the full design was the reference (gold standard classification). The receiver operating characteristics of parsimonious designs were used to determine an optimal parsimonious classification method. The best two postdose windows (days 7–9 and 13–14) yielded optimal categorization with similar performance in the design evaluation data. This postdose two‐sample design provided 95% sensitivity and specificity when compared with the full design

    Development of a nonlinear hierarchical model to describe the disposition of deuterium in mother-infant pairs to assess exclusive breastfeeding practice

    Get PDF
    The World Health Organization recommends exclusive breastfeeding (EBF) for the first 6 months after birth. The deuterium oxide dose-to-the-mother (DTM) technique is used to distinguish EBF based on a cut-off (&lt; 25 g/day) of water intake from sources other than breastmilk. This value is based on a theoretical threshold and has not been verified in field studies. The aim of this study was to estimate the water intake cut-off value that can be used to define EBF practice. One hundred and twenty-one healthy infants, aged 2.5-5.5 months who were deemed to be EBF were recruited. After administration of deuterium to the mothers, saliva was sampled from mother and infant pairs over a 14-day period. Validation of infant feeding practices was conducted via home observation over six non-consecutive days with caregiver recall. A fully Bayesian framework using a gradient-based Markov chain Monte Carlo approach implemented in Stan was used to estimate the cut-off of non-milk water intake of EBF infants. From the original data set, 113 infants were determined to be EBF and provided 1500 paired mother-infant observations. The deuterium saliva concentrations were best described by two linked 1-compartment models (mother and infant), with body weight as a covariate on the mother's volume of distribution and infant's body weight on infant's water clearance rate. The cut-off value was based on the 90th percentile of the posterior distribution of non-milk water intake and was 86.6 g/day. This cut-off value can be used in future field studies in other geographic regions to determine exclusivity of breast feeding practices in order to determine their potential public health needs
    corecore