10 research outputs found

    Technical guidance on monitoring for the Marine Stategy Framework Directive

    Get PDF
    The Marine Directors of the European Union (EU), Acceding Countries, Candidate Countries and EFTA Countries have jointly developed a common strategy for supporting the implementation of the Directive 2008/56/EC, “the Marine Strategy Framework Directive” (MSFD). The main aim of this strategy is to allow a coherent and harmonious implementation of the Directive. Focus is on methodological questions related to a common understanding of the technical and scientific implications of the Marine Strategy Framework Directive. In particular, one of the objectives of the strategy is the development of non-legally binding and practical documents, such as this technical guidance on monitoring for the MSFD. These documents are targeted to those experts who are directly or indirectly implementing the MSFD in the marine regions. The document has been prepared by the Joint Research Centre of the European Commission (JRC) with the contribution of experts from Member States, Regional Seas Conventions and ICES and following consultation of the Working Group on Good Environmental Status.JRC.H.1-Water Resource

    Under the influence of regulations: spatio-temporal trends of the UV filter 2-Ethylhexyl-4-methoxycinnamate (EHMC) in German rivers

    No full text
    BACKGROUND: Globally, 2-Ethylhexyl-4-methoxycinnamate (EHMC) is one of the most commonly used UV filters in sunscreen and personal care products. Due to its widespread usage, the occurrence of EHMC in the aquatic environment has frequently been documented. In the EU, EHMC is listed under the European Community Rolling Action Plan (CoRAP) as suspected to be persistent, bioaccumulative, and toxic (PBT) and as a potential endocrine disruptor. It was included in the first watch list under the Water Framework Directive (WFD) referring to a sediment PNEC of 200 µg/kg dry weight (dw). In the light of the ongoing substance evaluation to refine the environmental risk assessment, the objective of this study was to obtain spatio-temporal trends for EHMC in freshwater. We analyzed samples of suspended particulate matter (SPM) retrieved from the German environmental specimen bank (ESB). The samples covered 13 sampling sites from major German rivers, including Rhine, Elbe, and Danube, and have been collected since mid-2000s. RESULTS: Our results show decreasing concentrations of EHMC in annual SPM samples during the studied period. In the mid-2000s, the levels for EHMC ranged between 3.3 and 72 ng/g dw. The highest burden could be found in the Rhine tributary Saar. In 2017, we observed a maximum concentration ten times lower (7.9 ng/g dw in samples from the Saar). In 62% of all samples taken in 2017, concentrations were even below the limit of quantification (LOQ) of 2.7 ng/g dw. CONCLUSIONS: The results indicate a general declining discharge of EHMC into German rivers within the last 15 years and correspond to the market data. Although the measured levels are below the predicted no-effect level (PNEC) in sediment, further research should identify local and seasonal level of exposure, e.g., at highly frequented bathing waters especially in lakes. In addition, possible substitutes as well as their potentially synergistic effects together with other UV filters should be investigated

    Selection and application of trophic magnification factors for priority substances to normalize freshwater fish monitoring data under the European Water Framework Directive: a case study

    No full text
    BACKGROUND: The European Water Framework Directive (WFD) requires the monitoring of biota—preferably fish—to check the compliance of tissue concentrations of priority substances (PS) against substance-specific environmental quality standards (EQSs). In monitoring programs, different fish species are covered, which often are secondary consumers with a trophic level (TL) of about 3. For harmonization, a normalization of monitoring data to a common trophic level is proposed, i.e., TL 4 (predatory fish) in freshwaters, so that data would be sufficiently protective. For normalization, the biomagnification properties of the chemicals can be considered by applying substance-specific trophic magnification factors (TMFs). Alternatively, TL-corrected biomagnification factors (BMFTLs) may be applied. Since it is impractical to derive site-specific TMFs or BMFTLs, often data from literature will be used for normalization. However, available literature values for TMFs and BMFTLs are quite varying. In the present study, the use of literature-derived TMFs and BMFTLs in data normalization is studied more closely. RESULTS: An extensive literature evaluation was conducted to identify appropriate TMFs for the WFD PS polybrominated diphenyl ethers (PBDE), hexachlorobenzene, perfluorooctane sulfonate (PFOS), dioxins and dioxin-like compounds (PCDD/F + dl-PCB), hexabromocyclododecane, and mercury. The TMFs eventually derived were applied to PS monitoring data sets of fish from different trophic levels (chub, bream, roach, and perch) from two German rivers. For comparison, PFOS and PBDE data were also normalized using literature-retrieved BMFTLs. CONCLUSIONS: The evaluation illustrates that published TMFs and BMFTLs for WFD PS are quite variable and the selection of appropriate values for TL 4 normalization can be challenging. The normalized concentrations partly included large uncertainties when considering the range of selected TMFs, but indicated whether an EQS exceedance at TL 4 can be expected. Normalization of the fish monitoring data revealed that levels of substances accumulating in the food web (TMF or BMF > 1) can be underestimated when relying on fish with TL < 4 for EQS compliance assessment. The evaluation also revealed that TMF specifically derived for freshwater ecosystems in Europe would be advantageous. Field-derived BMFTLs seemed to be no appropriate alternative to TMFs, because they can vary even stronger than TMFs

    Biological effect and chemical monitoring of Watch List substances in European surface waters: Steroidal estrogens and diclofenac – Effect-based methods for monitoring frameworks

    No full text
    International audienceThree steroidal estrogens, 17 alpha-ethinylestradiol (EE2), 17 beta-estradiol (E2), estrone (E1), and the non-steroidal anti-inflammatory drug (NSAID), diclofenac have been included in the first Watch List of the Water Framework Directive (WFD, EU Directive 2000/60/EC, EU Implementing Decision 2015/495). This triggered the need for more EU-wide surface water monitoring data on these micropollutants, before they can be considered for inclusion in the list of priority substances regularly monitored in aquatic ecosystems. The revision of the priority substance list of the WFD offers the opportunity to incorporate more holistic bioanalytical approaches, such as effect-based monitoring, alongside single substance chemical monitoring. Effect-based methods (EBMs) are able to measure total biological activities (e.g., estrogenic activity or cyxlooxygenase [COX]-inhibition) of specific group of substances (such as estrogens and NSAIDs) in the aquatic environment at low concentrations (pg/L). This makes them potential tools for a cost-effective and ecotoxicologically comprehensive water quality assessment. In parallel, the use of such methods could build a bridge from chemical status assessments towards ecological status assessments by adressing mixture effects for relevant modes of action. Our study aimed to assess the suitability of implementing EBMs in the WFD, by conducting a large-scale sampling and analysis campaign of more than 70 surface waters across Europe. This resulted in the generation of high-quality chemical and effect-based monitoring data for the selected Watch List substances. Overall, water samples contained low estrogenicity (0.01-1.3 ng E2-Equivalent/L) and a range of COX-inhibition activity similar to previously reported levels (12-1600 ng Diclofenac-Equivalent/L). Comparison between effect-based and conventional analytical chemical methods showed that the chemical analytical approach for steroidal estrogens resulted in more (76%) non-quantifiable data, i.e., concentrations were below detection limits, compared to the EBMs (28%). These results demonstrate the excellent and sensitive screening capability of EBMs

    Marine Strategy Framework Directive - Task Group 8 Contaminants and Pollution Effects

    No full text
    The Marine Strategy Framework Directive (2008/56/EC) (MSFD) requires that the European Commission (by 15 July 2010) should lay down criteria and methodological standards to allow consistency in approach in evaluating the extent to which Good Environmental Status (GES) is being achieved. ICES and JRC were contracted to provide scientific support for the Commission in meeting this obligation. A total of 10 reports have been prepared relating to the descriptors of GES listed in Annex I of the Directive. Eight reports have been prepared by groups of independent experts coordinated by JRC and ICES in response to this contract. In addition, reports for two descriptors (Contaminants in fish and other seafood and Marine Litter) were written by expert groups coordinated by DG SANCO and IFREMER respectively. A Task Group was established for each of the qualitative Descriptors. Each Task Group consisted of selected experts providing experience related to the four marine regions (the Baltic Sea, the North-east Atlantic, the Mediterranean Sea and the Black Sea) and an appropriate scope of relevant scientific expertise. Observers from the Regional Seas Conventions were also invited to each Task Group to help ensure the inclusion of relevant work by those Conventions. This is the report of Task Group 8 Contaminants and Pollution Effects.JRC.DDG.H.5-Rural, water and ecosystem resource

    Marine Strategy Framework Directive. Task Group 8 Report. Contaminants and Pollution Effects

    No full text
    The Marine Strategy Framework Directive (2008/56/EC) (MSFD) requires that the European Commission (by 15 July 2010) should lay down criteria and methodological standards to allow consistency in approach in evaluating the extent to which Good Environmental Status (GES) is being achieved. ICES and JRC were contracted to provide scientific support for the Commission in meeting this obligation. A total of 10 reports have been prepared relating to the descriptors of GES listed in Annex I of the Directive. Eight reports have been prepared by groups of independent experts coordinated by JRC and ICES in response to this contract. In addition, reports for two descriptors (Contaminants in fish and other seafood and Marine Litter) were written by expert groups coordinated by DG SANCO and IFREMER respectively. A Task Group was established for each of the qualitative Descriptors. Each Task Group consisted of selected experts providing experience related to the four marine regions (the Baltic Sea, the North-east Atlantic, the Mediterranean Sea and the Black Sea) and an appropriate scope of relevant scientific expertise. Observers from the Regional Seas Conventions were also invited to each Task Group to help ensure the inclusion of relevant work by those Conventions. This is the report of Task Group 8 Contaminants and pollution effects.European Commission,Joint Research CentrePeer reviewe

    Harmonised protocols for method validation for monitoring and biomonitoring of emerging pollutants - Developed by the NORMAN network

    No full text
    International audienceComparability and reliability of monitoring data are essential for any meaningful assessment and for the management of environmental risks. For emerging pollutants, there is concern regarding the comparability of data at the European level. Methods used for the monitoring of emerging pollutants have often not been properly validated either in-house or at the international level. Such methods are often not well established in the scientific community, and far from being harmonised or standardised. In addition, they may only be applicable to specific conditions (matrix, organism) which may further complicate data comparability. Within the EU-funded coordination action "NORMAN - Network of Reference Laboratories for Monitoring and Bio-monitoring of Emerging Pollutants", a common European approach to the validation of both chemical and biological methods for the respective monitoring and bio-monitoring of emerging pollutants (or their effects) in a broad range of matrices has been developed. This guidance document addresses three different validation approaches, in increasing order of complexity. These are : 1. Within-laboratory validation (research level) ; 2. Basic external validation (transferability at expert level) ; 3. Inter-laboratory validation (routine level). The concept of these three approaches is strictly hierarchical, i.e. a method must fulfil all criteria of the lower level before it can enter the validation protocol of a higher level. In the case of a specific monitoring task, this protocol will guide the user through the following steps : I. Evaluation and classification of existing methods with respect to their potential, both in terms of validation, and the selection of an appropriate validation approach ; II. Development of a method, in terms of extending its application ; III. The validation procedures to be undertaken in order to effectively demonstrate the validation status of a selected method according to the three approaches adopted. The scope of the harmonised protocol covers quantitative and qualitative biological and chemical test methods for the analysis of water, air, soil and biota. The protocols have been tested in three case studies, each one matching one of the three validation levels. Based on the feedback from the case studies, the protocols have been improved. Future validation studies (for methods to monitor emerging pollutants) by the NORMAN network will make use of the protocols, and it is intended to implement the protocols at the level of European Standardisation (e.g. as CEN guidance document)

    Review of the Commission Decision 2010/477/EU concerning MSFD criteria for assessing Good Environmental Status: Descriptor 9 Contaminants in fish and other seafood for human consumption do not exceed levels established by Community legislation or other relevant standards

    No full text
    This report represents the result of the scientific and technical review of Commission Decision 2010/477/EU in relation to Descriptor 9. The review has been carried out by the EC JRC together with experts nominated by EU Member States, and has considered contributions from the GES Working Group in accordance with the roadmap set out in the MSFD implementation strategy (agreed on at the 11th CIS MSCG meeting). The report is one of a series of reports (review manuals) including Descriptor 1, 2, 5, 7, 8, 9, 10 that conclude phase 1 of the review process and, as agreed within the MSFD Common Implementation Strategy, are the basis for review phase 2, towards an eventual revision of the Commission Decision 2010/477/EU. The report presents the state of the technical discussions as of 30 April 2015 (document version 8.0: ComDecRev_D9_V8), as some discussions are ongoing, it does not contain agreed conclusions on all issues. The views expressed in the document do not necessarily represent the views of the European Commission.JRC.H.1-Water Resource
    corecore