253 research outputs found

    Immuno-Thrombotic Effects of Platelet Serotonin

    Get PDF
    Platelets transport and store serotonin at a high concentration in dense granules and release it upon activation. Abnormal serotonin concentrations in the blood plasma or increased platelet serotonin release promote the development of thrombosis, sepsis, allergic asthma, myocardial infarction, and stroke. Consequently, experimental data suggest possible benefits of serotonin receptor blockade or inhibition of platelet serotonin uptake in the indicated human diseases. Here, we highlight the current state of basic biological research regarding the role of platelet serotonin in normal and pathophysiological conditions focusing on thrombotic and inflammatory diseases. We also describe the possible clinical applicability of targeting thrombo-immune-modulatory effects of platelet serotonin to treat common health problems

    p38 mitogen-activated protein kinase activation during platelet storage: Consequences for platelet recovery and hemostatic function in vivo

    Get PDF
    Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-α and GPV. We recently demonstrated that tumor necrosis factor-α converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37°C or 22°C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets

    Serotonin Antagonism Improves Platelet Inhibition in Clopidogrel Low-Responders after Coronary Stent Placement: An In Vitro Pilot Study

    Get PDF
    Increased residual platelet reactivity remains a burden for coronary artery disease (CAD) patients who received a coronary stent and do not respond sufficiently to treatment with acetylsalicylic acid and clopidogrel. We hypothesized that serotonin antagonism reduces high on-treatment platelet reactivity. Whole blood impedance aggregometry was performed with arachidonic acid (AA, 0.5 mM) and adenosine diphosphate (ADP, 6.5 ”M) in addition to different concentrations of serotonin (1–100 ”M) in whole blood from 42 CAD patients after coronary stent placement and 10 healthy subjects. Serotonin increased aggregation dose-dependently in CAD patients who responded to clopidogrel treatment: After activation with ADP, aggregation increased from 33.7±1.3% to 40.9±2.0% in the presence of 50 ”M serotonin (p<0.05) and to 48.2±2.0% with 100 ”M serotonin (p<0.001). The platelet serotonin receptor antagonist ketanserin decreased ADP-induced aggregation significantly in clopidogrel low-responders (from 59.9±3.1% to 37.4±3.5, p<0.01), but not in clopidogrel responders. These results were confirmed with light transmission aggregometry in platelet-rich plasma in a subset of patients. Serotonin hence increased residual platelet reactivity in patients who respond to clopidogrel after coronary stent placement. In clopidogrel low-responders, serotonin receptor antagonism improved platelet inhibition, almost reaching responder levels. This may justify further investigation of triple antiplatelet therapy with anti-serotonergic agents

    P2Y<sub>12</sub>-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction

    Get PDF
    Emergency hematopoiesis is the driving force of the inflammatory response to myocardial infarction (MI). Increased proliferation of hematopoietic stem and progenitor cells (LSK) after MI enhances cell production in the bone marrow (BM) and replenishes leukocyte supply for local cell recruitment to the infarct. Decoding the regulation of the inflammatory cascade after MI may provide new avenues to improve post-MI remodeling. In this study, we describe the influence of adenosine diphosphate (ADP)-dependent P2Y12-mediated signaling on emergency hematopoiesis and cardiac remodeling after MI. Permanent coronary ligation was performed to induce MI in a murine model. BM activation, inflammatory cell composition and cardiac function were assessed using global and platelet-specific gene knockout and pharmacological inhibition models for P2Y12. Complementary in vitro studies allowed for investigation of ADP-dependent effects on LSK cells. We found that ADP acts as a danger signal for the hematopoietic BM and fosters emergency hematopoiesis by promoting Akt phosphorylation and cell cycle progression. We were able to detect P2Y12 in LSK, implicating a direct effect of ADP on LSK via P2Y12 signaling. P2Y12 knockout and P2Y12 inhibitor treatment with prasugrel reduced emergency hematopoiesis and the excessive inflammatory response to MI, translating to lower numbers of downstream progeny and inflammatory cells in the blood and infarct. Ultimately, P2Y12 inhibition preserved cardiac function and reduced chronic adverse cardiac remodeling after MI. P2Y12-dependent signaling is involved in emergency hematopoiesis after MI and fuels post-ischemic inflammation, proposing a novel, non-canonical value for P2Y12 antagonists beyond inhibition of platelet-mediated atherothrombosis

    Serotonin transporter-deficient mice display enhanced adipose tissue inflammation after chronic high-fat diet feeding.

    Get PDF
    INTRODUCTION Serotonin is involved in leukocyte recruitment during inflammation. Deficiency of the serotonin transporter (SERT) is associated with metabolic changes in humans and mice. A possible link and interaction between the inflammatory effects of serotonin and metabolic derangements in SERT-deficient mice has not been investigated so far. METHODS SERT-deficient (Sert -/-) and wild type (WT) mice were fed a high-fat diet, starting at 8 weeks of age. Metabolic phenotyping (metabolic caging, glucose and insulin tolerance testing, body and organ weight measurements, qPCR, histology) and assessment of adipose tissue inflammation (flow cytometry, histology, qPCR) were carried out at the end of the 19-week high-fat diet feeding period. In parallel, Sert -/- and WT mice received a control diet and were analyzed either at the time point equivalent to high-fat diet feeding or as early as 8-11 weeks of age for baseline characterization. RESULTS After 19 weeks of high-fat diet, Sert -/- and WT mice displayed similar whole-body and fat pad weights despite increased relative weight gain due to lower starting body weight in Sert -/-. In obese Sert -/- animals insulin resistance and liver steatosis were enhanced as compared to WT animals. Leukocyte accumulation and mRNA expression of cytokine signaling mediators were increased in epididymal adipose tissue of obese Sert -/- mice. These effects were associated with higher adipose tissue mRNA expression of the chemokine monocyte chemoattractant protein 1 and presence of monocytosis in blood with an increased proportion of pro-inflammatory Ly6C+ monocytes. By contrast, Sert -/- mice fed a control diet did not display adipose tissue inflammation. DISCUSSION Our observations suggest that SERT deficiency in mice is associated with inflammatory processes that manifest as increased adipose tissue inflammation upon chronic high-fat diet feeding due to enhanced leukocyte recruitment

    Non-vitamin-K-antagonist oral anticoagulants (NOACs) after acute myocardial infarction: a network meta-analysis

    Get PDF
    BACKGROUND: Balancing the risk of bleeding and thrombosis after acute myocardial infarction (AMI) is challenging, and the optimal antithrombotic therapy remains uncertain. The potential of non-vitamin K antagonist oral anticoagulants (NOACs) to prevent ischaemic cardiovascular events is promising, but the evidence remains limited. OBJECTIVES: To evaluate the efficacy and safety of non-vitamin-K-antagonist oral anticoagulants (NOACs) in addition to background antiplatelet therapy, compared with placebo, antiplatelet therapy, or both, after acute myocardial infarction (AMI) in people without an indication for anticoagulation (i.e. atrial fibrillation or venous thromboembolism). SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, the Conference Proceedings Citation Index - Science, and two clinical trial registers in September 2022 with no language restrictions. We checked the reference lists of included studies for any additional trials. SELECTION CRITERIA: We searched for randomised controlled trials (RCTs) that evaluated NOACs plus antiplatelet therapy versus placebo, antiplatelet therapy, or both, in people without an indication for anticoagulation after an AMI. DATA COLLECTION AND ANALYSIS: Two review authors independently checked the results of searches to identify relevant studies, assessed each included study, and extracted study data. We conducted random-effects pairwise analyses using Review Manager Web, and network meta-analysis using the R package 'netmeta'. We ranked competing treatments by P scores, which are derived from the P values of all pairwise comparisons and allow ranking of treatments on a continuous 0-to-1 scale. MAIN RESULTS: We identified seven eligible RCTs, including an ongoing trial that we could not include in the analysis. Of the six RCTs involving 33,039 participants, three RCTs compared rivaroxaban with placebo, two RCTs compared apixaban with placebo, and one RCT compared dabigatran with placebo. All participants in the six RCTs received concomitant antiplatelet therapy. The available evidence suggests that rivaroxaban compared with placebo reduces the rate of all-cause mortality (risk ratio (RR) 0.82, 95% confidence interval (CI) 0.69 to 0.98; number needed to treat for an additional beneficial outcome (NNTB) 250; 3 studies, 21,870 participants; high certainty) and probably reduces cardiovascular mortality (RR 0.83, 95% CI 0.69 to 1.01; NNTB 250; 3 studies, 21,870 participants; moderate certainty). There is probably little or no difference between apixaban and placebo in all-cause mortality (RR 1.09, 95% CI 0.88 to 1.35; number needed to treat for an additional harmful outcome (NNTH) 334; 2 studies, 8638 participants; moderate certainty) and cardiovascular mortality (RR 0.99, 95% CI 0.77 to 1.27; number needed to treat not applicable; 2 studies, 8638 participants; moderate certainty). Dabigatran may reduce the rate of all-cause mortality compared with placebo (RR 0.57, 95% CI 0.31 to 1.06; NNTB 63; 1 study, 1861 participants; low certainty). Dabigatran compared with placebo may have little or no effect on cardiovascular mortality, although the point estimate suggests benefit (RR 0.72, 95% CI 0.34 to 1.52; NNTB 143; 1 study, 1861 participants; low certainty). Two of the investigated NOACs were associated with an increased risk of major bleeding compared to placebo: apixaban (RR 2.41, 95% CI 1.44 to 4.06; NNTH 143; 2 studies, 8544 participants; high certainty) and rivaroxaban (RR 3.31, 95% CI 1.12 to 9.77; NNTH 125; 3 studies, 21,870 participants; high certainty). There may be little or no difference between dabigatran and placebo in the risk of major bleeding (RR 1.74, 95% CI 0.22 to 14.12; NNTH 500; 1 study, 1861 participants; low certainty). The results of the network meta-analysis were inconclusive between the different NOACs at all individual doses for all primary outcomes. However, low-certainty evidence suggests that apixaban (combined dose) may be less effective than rivaroxaban and dabigatran for preventing all-cause mortality after AMI in people without an indication for anticoagulation. AUTHORS' CONCLUSIONS: Compared with placebo, rivaroxaban reduces all-cause mortality and probably reduces cardiovascular mortality after AMI in people without an indication for anticoagulation. Dabigatran may reduce the rate of all-cause mortality and may have little or no effect on cardiovascular mortality. There is probably no meaningful difference in the rate of all-cause mortality and cardiovascular mortality between apixaban and placebo. Moreover, we found no meaningful benefit in efficacy outcomes for specific therapy doses of any investigated NOACs following AMI in people without an indication for anticoagulation. Evidence from the included studies suggests that rivaroxaban and apixaban increase the risk of major bleeding compared with placebo. There may be little or no difference between dabigatran and placebo in the risk of major bleeding. Network meta-analysis did not show any superiority of one NOAC over another for our prespecified primary outcomes. Although the evidence suggests that NOACs reduce mortality, the effect size or impact is small; moreover, NOACs may increase major bleeding. Head-to-head trials, comparing NOACs against each other, are required to provide more solid evidence

    Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macriphages

    Get PDF
    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease.Fil: Marchini, Timoteo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Wolf, Dennis. University Of Freiburg; AlemaniaFil: Anto Michel, Nathaly. University Of Freiburg; AlemaniaFil: Mauler, Maximilian. University Of Freiburg; AlemaniaFil: Dufner, Bianca. University Of Freiburg; AlemaniaFil: Hoppe, Natalie. University Of Freiburg; AlemaniaFil: Beckert, Jessica. University Of Freiburg; AlemaniaFil: JÀekel, Markus. University Of Freiburg; AlemaniaFil: Magnani, Natalia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Duerschmied, Daniel. University Of Freiburg; AlemaniaFil: Tasat, Deborah Ruth. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro de Estudios en Salud y Medio Ambiente; ArgentinaFil: Alvarez, Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Reinöhl, Jochen. University Of Freiburg; AlemaniaFil: von zur Muhlen, Constantin. University Of Freiburg; AlemaniaFil: Idzko, Marco. University Of Freiburg; AlemaniaFil: Bode, Christoph. University Of Freiburg; AlemaniaFil: Hilgendorf, Ingo. University Of Freiburg; AlemaniaFil: Evelson, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Zirlik, Andreas. University Of Freiburg; Alemani

    Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium

    Get PDF
    © Springer Nature Limited 2022. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1038/s41569-021-00665-7Coronavirus disease 2019 (COVID-19) predisposes patients to thrombotic and thromboembolic events, owing to excessive inflammation, endothelial cell activation and injury, platelet activation and hypercoagulability. Patients with COVID-19 have a prothrombotic or thrombophilic state, with elevations in the levels of several biomarkers of thrombosis, which are associated with disease severity and prognosis. Although some biomarkers of COVID-19-associated coagulopathy, including high levels of fibrinogen and d-dimer, were recognized early during the pandemic, many new biomarkers of thrombotic risk in COVID-19 have emerged. In this Consensus Statement, we delineate the thrombotic signature of COVID-19 and present the latest biomarkers and platforms to assess the risk of thrombosis in these patients, including markers of platelet activation, platelet aggregation, endothelial cell activation or injury, coagulation and fibrinolysis as well as biomarkers of the newly recognized post-vaccine thrombosis with thrombocytopenia syndrome. We then make consensus recommendations for the clinical use of these biomarkers to inform prognosis, assess disease acuity, and predict thrombotic risk and in-hospital mortality. A thorough understanding of these biomarkers might aid risk stratification and prognostication, guide interventions and provide a platform for future research.Peer reviewe
    • 

    corecore