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Abstract

The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is
expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-
limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by
platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos
removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess
whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and
wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here
we report that Tph1 (2/2) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT)
suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.
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Introduction

Tryptophan hydroxylase (TPH) is the rate-limiting enzyme

involved in the biosynthesis of serotonin [1,2]. Recently, it has

been established that two forms of tryptophan hydroxylase exist:

termed TPH1 and TPH2. Under normal conditions,TPH1 is

predominantly expressed in a wide variety of non-neuronal cells

such as enterochromaffin cells of the gut, mast cells and the pineal

gland [3,4,5]. In the blood, serotonin is primarily stored in the

dense granules of platelets which undergo endocytosis via the

serotonin transporter [3]. TPH2 is expressed in neurons of the

central, peripheral and enteric nervous systems [3,4,5]. In adult

life, there appears to be no substantial overlap in the expression of

the two TPH isoforms [6,7]. However, there is evidence that

TPH1 mRNA is present in the raphé nuclei during postnatal

development where it may have an impact on the nervous system

[8].

Genetic deletion of Tph1 has been linked to nervous system

abnormalities in E12.5 mouse embryos removed from Tph1 (2/2)

mothers [9]. Specifically, embryos from Tph1 (2/2) mothers

revealed gross abnormalities such as overall size reduction, altered

morphology of the rhombencephale regions and neopallial cortex

and decreased mitotic activity in ventricular zone and roof of the

neopallial cortex. Defects were not found in Tph1 (2/2) embryos

from heterozygous or WT mothers indicating that maternal Tph1

plays a role in development of the CNS. Another potential source

of TPH1 during development is from the placenta where it is

expressed as early as E10.5 and has been shown to contribute to 5-

HT levels in the embryonic forebrain during early development

[10]. While it is unknown if the CNS abnormalities in null and

heterozygous embryos from Tph1 (2/2) mothers continue into

adulthood, there are studies indicating that altered 5-HT signaling,

especially during early postnatal development, can lead to other

disorders such as anxiety in the adult [11,12,13,14,15].

Several phenotypes have been reported in Tph1 (2/2) mice

such as mild anemia [16,17], decreased neutrophil recruitment to

inflammatory sites [17], diabetes, in particular during pregnancy

[18,19], and cardiopathy [4] which could potentially lead to

behavioral deficits in offspring of Tph1 (2/2) mice.

Interestingly, it has recently been reported in humans that

maternal use of selective serotonin reuptake inhibitors (SSRIs),

which prevent uptake of peripheral serotonin into neurons as well

as platelets, is linked to a more pronounced decrease in growth of

fetal head circumference when compared to untreated maternal
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depression [20]. It is unknown whether this difference leads to

long-term behavioral changes in children of women taking SSRIs

during pregnancy.

Taken together, these previous observations led us to hypoth-

esize that Tph1 (2/2) mice born from null mothers could have

behavioral abnormalities in adulthood. In the current study, we

show that Tph1 (2/2) mice born from knockout mothers have

altered gait dynamics throughout life and deficits in rearing

behavior with age when compared to age-matched wild-type mice.

These data suggest that TPH1 has an impact on nervous system

development and possibly maintenance.

Materials and Methods

Mice
All animal experiments were approved by the Animal Care and

Use Committee of the Immune Disease Institute and the Harvard

Medical Area standing committee on animals (#04761). Adequate

measures were taken to minimize pain and discomfort. C57BL/6J

(WT) mice were purchased from Jackson Laboratory (Bar Harbor,

ME, USA). Tph1 (2/2) mice were a kind gift, received from M.

Bader, Max-Delbruck-Center, Berlin, Germany and were on

C57BL/6 background. To avoid genetic drift, Tph1 (2/2) mice

were routinely back-crossed to C57BL/6J mice a minimum of five

times prior to experimentation and were continued to be back-

crossed routinely. All mice used for the behavioral experiments

were male, age- and weight-matched. All Tph1 (2/2) mice used

for experiments were bred from Tph1 (2/2) pairs.

Rotarod, grip strength, open field, metabolic activity, attention

performance and social novelty preference tests were performed at

the NeuroBehavior Laboratory of the Harvard NeuroDiscovery

Center. These paradigms were run in the respective order listed on

the same groups of mice (2–3 month old mice termed ‘‘young’’

and 8–9 month old mice termed ‘‘aged’’). The number of animals

used for these studies was: WT young n = 10, Tph1 (2/2) young

n = 10, WT aged n = 10, Tph1 (2/2) aged n = 8. All mice were

single-housed and acclimated to the facility for two weeks prior to

experimentation.

Gait dynamics and electrocardiogrpahy (Mouse Specifics Inc,

Quincy, MA, USA), and beam walk were performed at the

Immune Disease Institute in that order on group-housed mice at

two ages (2–3 month old mice termed ‘‘young’’ and an aged group

termed ‘‘.60 week old mice’’) except for electrocardiography

which was only performed on the .60 week old mice. The

number of animals used for these studies was: WT young: n = 6

(gait), n = 8 (beam walk); Tph1 (2/2) young: n = 8 (gait), n = 7

(beam walk); WT aged n = 8 (gait, electrocardiography, beam

walk), Tph1 (2/2) aged n = 10 (gait, electrocardiography and

beam walk). Different cohorts of mice were used for gait and beam

walk for the ‘‘young’’ groups whereas the same cohort of mice was

used for the aged group. Mice were housed in the same facility for

two weeks prior to experimentation. All experimentation was

conducted during the light phase.

Fasting blood glucose level measurements were performed at

the Boston Children’s Hospital animal facility on age- and gender-

matched young male (WT: n = 4; Tph1 (2/2): n = 4) and female

(WT: n = 6; Tph1 (2/2): n = 5) mice that were group-housed.

Rotarod Task
The rotarod apparatus consisted of a 3 cm in diameter, elevated

rod that rotates at different speeds (Ugo Basile; Comerio VA, Italy)

to assess sensorimotor ability in each mouse. One hour prior to

testing, each mouse was habituated to the rotarod at a fixed speed

and was placed back on the rod if it fell off within a 300 second

time interval. For testing, the rod was accelerated from 4 to

40 rpm over 180 seconds and time to fall off the apparatus was

recorded. Two trials were conducted and times were averaged for

between group comparisons.

Grip-Strength Test
The grip-strength test apparatus consisted of a grasping trapeze

connected to a force transducer (Ugo Basile). Each mouse was held

by the base of the tail and placed in front of the grasping trapeze.

Once the mouse grasped the trapeze, it was slowly pulled back

until the pulling force overcame the mouse’s grip strength. The

grip-strength meter expresses the grip force in grams. Each mouse

was submitted to five trials that were separated by an inter-trial

interval of 15 minutes. Final score represents the average of the

five trials for each mouse.

Open-Field Activity Test
The open field test was used to study general activity in mice

confined to a novel arena. The apparatus used was a

27.9627.9 cm Plexiglas arena with three 16-beam infrared arrays

(Med Associates, St. Albans, VT). Mice were acclimated to the

testing room for at least 30 minutes prior to testing. At the

beginning of each session, mice were placed into the center of the

open field and allowed to freely explore for 60 minutes. The total

distance traveled (centimeters) and vertical beam breaks (an

indication of rearing activity) were automatically recorded.

Gait Dynamics
Gait dynamics were assessed using the DigiGait system (Mouse

Specifics Inc, Quincy, MA, USA) in age-matched WT and Tph1

(2/2) mice at 8 weeks (young) and .60 weeks (aged) of age as

previously described [21,22]. Briefly, digital images of the ventral

plane of the mice were captured at 150 frames/sec for each mouse

as it walked on a transparent treadmill belt. Young mice walked at

a speed of 24 cm/sec whereas aged mice walked at 16 cm/sec.

The speeds selected were based on published studies and the

ability of the majority of the mice in each group to maintain a

steady velocity during the short bout of walking(,1 minute).

Software automatically determined the area of each paw as it

advanced towards, established contact with, and retreated from

the treadmill belt, providing gait signals for each of the four limbs.

Numerous postural and kinematic indices were calculated from

the images and gait signals. Gait metrics for each mouse were

calculated from its individual ,12 strides, and group means were

calculated.

Beam Walk
The beam walk test was set up as previously described [23].

Briefly, a 6 mm wide, 36-inch long beam was raised 1.5 feet above

the surface. A black box was placed at one end to entice the mouse

to cross the beam making a walking distance of 30 inches. Each

mouse was placed on the opposite end of the beam and allowed to

cross the beam to the black box. Bedding materials from the home

cage of each mouse were placed in the black box as extra incentive

for the mouse to cross the beam. The beam and box were cleaned

with ethanol between each mouse. Mice were trained for 2 days, 2

times per day before testing. For the testing period, a video camera

was located at the end of the beam opposite of the black box to

give a view of the animal’s feet on the beam. The number of times

each mouse had a foot slip off of the beam was counted by a

blinded observer.

Lack of TPH1 Leads to Gait Changes
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Attention performance testing
A recently developed method for testing visual discrimination

learning and attention performance was performed [24] and the

methods are briefly outlined below.

Food restriction
Five days prior to the start of operant conditioning experiments,

all subjects were placed on a food restriction diet. On the first day,

baseline body weights were recorded and mice were individually

placed into clean cages with access to water only. Food rations

(regular chow) were calculated as a function of each individual’s

bodyweight loss/gain from the previous day and delivered daily to

maintain a stable 80–85% of free feeding weight. During the 5-day

period preceding training, mice were given fifteen 20 mg casein

pellets (BioServ, Frenchtown, NJ, USA) daily, habituating the mice

to the rewards. The food restriction procedure was maintained for

the entire training and testing period.

Visual Discrimination Learning Procedure
In this lever-press learning paradigm, mice were required to

discriminate between reinforced and non-reinforced levers in

order to obtain a food reward. Previous experiments have

demonstrated that learning of the lever/reward association to be

dependent on integrity of the hippocampus [24]. Training

consisted of one daily session ending after either 80 trials or 45

minutes of session time had elapsed. Each trial began with the

presentation of both levers accompanied by a cued stimulus light

directly above one of the levers. Light-lever pairings were

distributed in a random and counterbalanced manner across

trials. Mice had to press the lever signaled by the light stimulus in

order to obtain the food reward. The stimulus light remained

illuminated until a lever-press was made or for a maximum

duration of 30 seconds. Following a correct response, levers were

retracted, a reward was delivered into the receptacle, and the

receptacle light remained on until the pellet was retrieved (Med

Associates).

Attention procedure
Mixed-trial attention sessions followed an identical protocol to

the discrimination procedure with the exception that the duration

of the stimulus light presentation was reduced to 0.5, 1, 2, or 10

seconds. Regardless of the stimulus duration, subjects had 30

seconds to respond before an omission was recorded. Twenty trials

at each stimulus duration were presented within a session (45

minutes maximum, 80 trials total), and stimulus durations and

lever-stimulus pairings were distributed randomly and counter-

balanced across trials.

Preference for social novelty
A three-chambered rectangular box was used to evaluate

sociability and preference for social novelty as previously described

[25,26]. Test mice were first placed in the middle chamber and

allowed to explore all three chambers for ten minutes (habitua-

tion). After the habituation period, the test mouse was confined to

the center chamber while an unfamiliar male mouse of the same

genotype (stranger 1), that had no prior contact with the subject

mouse, was confined to one of the side chambers in a small wire

cage. The test mouse was then allowed to explore the entire social

test box for a ten-minute session. At the end of the ten-minute

session, the test mouse was confined to the center chamber while

an unfamiliar mouse was confined in a small wire cage in the third

chamber (stranger 2). The test mouse was then allowed to explore

all three chambers to determine its preference for the new

stranger. The amount of time spent in each chamber and the

number of entries into each chamber were scored by an

automated video-tracking system (TopScan; Cleversys, Reston,

VA, USA). Data are represented as the time that the test mouse

spent exploring stranger 1 divided by the total amount of time it

was allowed to explore the chambers multiplied by 100% and the

time that the test mouse spent exploring stranger 2 divided by the

total amount of time it was allowed to explore the chambers

multiplied by 100%.

Metabolic/24-hour Activity Test
Monitoring animals in a familiar environment over an extended

period of time is often necessary to detect impairments in circadian

rhythms and/or metabolic activity. For that purpose we used the

Comprehensive Lab Animal Monitoring System (CLAMS) from

Columbus Instruments (Columbus, OH, USA). Mice were

individually placed in CLAMS chambers (plastic cages,

20 cm616 cm) for a period of three consecutive days (the first

two days are necessary for familiarization to the chambers and

behavioral measures were only analyzed during the final

24 hours). In these chambers, mice have free access to food

(regular chow) and water.

Measurement of blood glucose level
2–3 month old male and female Tph1 (2/2) mice and their

gender- and age-matched wild-type controls were fasted for

6 hours before measurement of blood glucose. Blood was obtained

by tail-nick method and the glucose level was immediately

determined using a glucometer (Clarity Advanced Blood Glucose

Meter, Diagnostic Test Group, Boca Raton, FL, USA).

Electrocardiography
Electrocardiograms were recorded non-invasively in awake

Tph1 (2/2) and WT mice, .60 weeks of age, as previously

described using the ECGenie electrocardiography system (Mouse

Specifics) [27]. Briefly, Einthoven signal-lead ECG signals were

recorded passively from the underside of the mouse’s paws as they

rested on the instrumented platform. Data from ,50 continuous

ECG signals were used for analyses.

Statistical Analysis
For vertical rearing counts, grip strength, and rotarod, a 2-way

ANOVA was used to examine genotype and age effects as well as

the interaction between these factors. For visual discrimination

and open field habituation, a repeated measures ANOVA was

added across session days and time respectively (Sigma Plot; San

Jose, CA, USA). During attention testing, the percentage of

correct responses was also separated by stimulus duration to

provide an accurate measure of performance across varying

degrees of attentional demand. When appropriate, Student-

Newman-Keuls post hoc tests were used to compare statistical

variation between groups. For beam walking, gait analysis, fasting

blood glucose levels, heart rate and QRS times a two-tailed,

unpaired student’s t-test was performed between age groups due to

the difference in treadmill speed in young and aged mice. Results

were considered significant at P,0.05.

Results

Gait dynamics are altered in Tph1 (2/2) mice
Gait dynamics in Tph1 (2/2) mice were significantly different

when compared to age-matched controls. Young mice of both

genotypes were made to walk on a treadmill at a speed of 24 cm/

sec and .60 week old mice walking at 16 cm/sec. Stride length

Lack of TPH1 Leads to Gait Changes
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and swing duration were significantly decreased in the Tph1 (2/2)

mice (n = 6–10 per group. Young: P,0.001; .60 weeks: P,0.001

for stride length and swing duration). Consistent with decreased

stride length, Tph1 (2/2) mice of both age groups displayed

increased stride frequencies (n = 6–10 per group. Young:

P,0.001; .60 weeks: P = 0.002), indicating that they were taking

more steps in the same period of time (Table 1).

Grip strength, rotarod and balance beam
We did not observe an effect of age or genotype in muscle

strength, motor coordination and/or neuro-muscular integration

as tested by grip strength (genotype effect: F(1,37) = 2.143;

P = 0.152; Figure 1A) and rotarod performance (genotype effect:

F(1,37) = 0.009; P = 0.922; Figure 1B). To further ensure that Tph1

(2/2) mice displayed normal locomotor function we utilized the

beam walk test (Figure 1C). In this task, there were no differences

in the number of hind leg slips between age-matched WT and

Tph1 (2/2) mice indicating that changes in gait dynamics were

not due to problems with fine motor coordination and balance

[23]. Additionally, fasting blood glucose levels were similar

between young Tph1 (2/2) and WT animals of both sexes (Male:

P = 0.50; Female: P = 0.53) (Figure S1 A, B). Electrocardiogram

results indicated that Tph1 (2/2) and WT mice at .60 weeks of

age had similar heart rate (P = 0.56) and QRS values (P = 0.32)

indicating that the Tph1 (2/2) mice have normal heart rhythm

and ventricular conduction. (Figure S1 C, D).

Calorimetry experiments conducted over a 72 hr period

demonstrated no differences in metabolic activity as assessed by

oxygen consumption, carbon dioxide production and respiratory

exchange rate between the WT and Tph1 (2/2) mice of both ages

(data not shown). Food intake and weight were also similar in WT

and Tph1 (2/2) mice of both ages (data not shown).

Open field activity
Spontaneous (total distance travelled) and motivated locomotion

(rearing activity) were assessed in a single, 60-minute open field

session. Our results indicate that all of the mice tested, regardless

of age or genotype, demonstrated a significant habituation to the

novel environment as reflected by a progressive decrease in activity

across session time (F(11,455) = 21.371; P,0.001). There was no

effect of age or genotype on the total distance travelled (genotype

effect: F(1, 455) = 0.243; P = 0.625) (Figure 2A) or the percentage of

time spent in the center (genotype effect: F(1, 37) = 0.150; P = 0.701)

(Figure 2B). However, an examination of the total number of

vertical rearings, a measure of motivated activity and curiosity,

demonstrated a significant difference in age (F(1, 37) = 5.394;

P = 0.027) and genotype (F(1, 37) = 7.989; P = 0.008) (Figure 2C).

These data demonstrate that a lack of peripheral serotonin may

lead to deficits in motivated locomotion that progressively worsen

with age.

Visual Discrimination learning and attention performance
Previous work has confirmed that learning the association

between an illuminated lever with reward is dependent on the

integrity of the hippocampal formation, while attention perfor-

mance in the same task is dependent on the medial prefrontal

Table 1. Tph1 (2/2) mice demonstrate alterations in gait dynamics.

C57BL/6J young Tph1 (2/2) young P-value C56BL/6 .60 weeks Tph1(2/2) .60 weeks P-value

Swing(ms) 9662.0 8562.0 ,0.01 10564.0 90.263.0 0.01

Swing of stride (%) 40.560.5 38.760.6 ,0.05 33.360.8 32.361.1 n.s.

Brake (ms) 4564.0 4562.0 n.s. 6265.0 8063.0 ,0.01

Propel (ms) 9464.0 8963.0 n.s. 14767.0 11465.0 ,0.01

Stance (ms) 14162.0 13462.0 ,0.05 20964.0 19465.0 ,0.05

Stance of stride (%) 59.560.5 62.460.6 ,0.05 66.760.8 67.761.1 n.s.

Stride (ms) 23762.0 21964.0 ,0.01 31567.0 28665.0 ,0.01

Stride length (cm) 5.760.15 5.360.1 ,0.01 5.060.1 4.660.1 ,0.01

Brake of stance (%) 33.662.6 3461.3 n.s. 30.562.7 41.761.8 ,0.01

Propel of stance (%) 66.462.6 66.161.3 n.s. 69.562.7 58.361.8 ,0.01

Stride frequency
(steps/sec)

4.360.0 4.760.1 ,0.01 3.360.1 3.660.1 ,0.01

Paw angle (deg) 10.460.9 9.961.2 n.s. 14.261.2 17.161.5 n.s.

Paw angle variability
(deg)

18.861.2 20.561.5 n.s. 8.561.1 7.360.7 n.s.

Paw Area at Peak
Stance (mm2)

485639 501634 n.s. 464643 517638 n.s.

Stride length CV
(CV%)

14.660.7 17.561.1 ,0.05 18.761.2 25.761.9 ,0.01

Paw Area Variability
at Peak Stance (mm2)

2963.0 2963.0 n.s. 3263.0 5268.0 0.05

Speed of treadmill
(cm/s)

24 24 16 16

Number of animals 6 8 8 10

A stride is comprised of a swing duration (limb in air) and a stance duration (paw in contact with the treadmill belt). The stance is comprised of a brake duration and a
propulsion duration. The paw angle is the outward angle that the paw makes relative to the long axis of the mouse during walking. Gait metrics were described
previously [21,45].
doi:10.1371/journal.pone.0059032.t001

Lack of TPH1 Leads to Gait Changes
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Figure 1. Muscular strength, balance, motor coordination and neuro-muscular integration are normal in Tph1 (2/2) mice. Grip
strength (A) and latency to fall off the rotarod apparatus (B) are similar in WT and Tph1 (2/2) mice in both age groups. There were no significant
differences in number of missed steps while crossing the beam (C) within age groups.
doi:10.1371/journal.pone.0059032.g001

Figure 2. Aged Tph1 (2/2) demonstrate significantly fewer vertical rearing counts compared to WT mice. Distance traveled in the open
field chamber (A) and time spent in the center of the chamber (B) was similar between WT and Tph1 (2/2) mice. Aged Tph12/2 mice have
significantly fewer vertical counts as assessed by 2-way ANOVA; P,0.05 (C). Post hoc analysis revealed that there was a significant difference between
aged WT and Tph1 (2/2) (* P,0.05) and a significant difference between young and aged Tph1 (2/2) mice (* P,0.05).
doi:10.1371/journal.pone.0059032.g002

Lack of TPH1 Leads to Gait Changes
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cortex [24]. For this reason, the current paradigm allows us to

examine cognitive abilities dependent on two separate brain

structures using the same paradigm. Both WT and Tph1 (2/2)

mice were able to learn the association between the stimulus light

and reward (session effect: F(12,493) = 93.385; P,0.001) however

there was a strong trend indicating that aged Tph1 (2/2) mice may

acquire this association slower (age6genotype: F (36, 493) = 1.398;

P = 0.06; Figure 3A). For attention testing, the amount of time the

light remained illuminated above the lever was varied in order to

alter attentional demand (the less time the light is on, the more

attentional demand on the subject). As internal controls, the light

was on for 0.5 seconds (performance indicated by chance 50%) and

10 seconds (an excess amount of time to make the correct choice,

not dependent on attention). Our results indicate no effect of

genotype at any of the current time points examined; however, age

did cause a significant deficit in performance during trials of 1 (age

effect: F(1,37) = 10.047; p = 0.003) and 2 seconds. (age effect:

F(1,37) = 4.212; p = 0.048; Figure 3B). The results indicate that lack

of peripheral serotonin did not cause severe cognitive alterations in

adulthood on tasks examining both hippocampal and prefrontal

cortex function.

Preference for social novelty
To determine the extent that Tph1-deficiency played a role in

the mouse’s preference for social novelty, we used a protocol

previously described to assess autistic-like characteristics [25]. This

procedure assesses both general sociability and the preference for

novelty in mice. Our results show that Tph1 (2/2) mice and age-

matched controls demonstrate increased time spent with a stranger

mouse compared to the empty chamber (Figure 4A) however,

there was no effect of genotype (F(1,37) = 1.243; P = 0.273) or age

(F(1,37) = 2.921; P = 0.097) on this performance. These results

indicate that Tph1 (2/2) mice demonstrate a preference for social

interactions similar to controls. In addition, Tph1 (2/2) mice and

controls also displayed increased exploration of a second stranger

mouse when compared to one previously investigated (Figure 4B)

although again there was no effect of genotype (F(1,37) = 0.007;

P = 0.933) or age (F(1,37) = 0.149; P = 0.702). This demonstrates

both an intact memory for a co-specific odor and the preference

for social novelty. Overall these data indicate that Tph1-deficiency

does not lead to deficits in social behavior.

Discussion

The goal of this study was to assess whether Tph1 (2/2)

offspring from Tph1 (2/2) mothers results in behavioral

abnormalities. The most striking behavioral differences that we

report in these Tph1 (2/2) mice are alterations in gait dynamics.

Gait dynamics can be used to determine a subject’s ability for

balance, proprioception and coordination. In addition, these

indices commonly reflect motor impairment in diseases such as

Parkinson’s disease, nerve injury and pain [28,29,30]. As gait

dynamics can be altered due to changes in neural circuitries

specific for locomotion, but also due to general motor and balance

disturbances, we performed a battery of tests on these mice such as

rotarod, grip strength, balance beam and open field tasks.

Although we found altered gait dynamics in young and aged

Tph1 (2/2) mice compared to age-matched controls, we did not

find any disturbances in general motor and balance abilities.

However, in the open field arena aged Tph1 (2/2) mice

demonstrated a significant decrease in vertical rearings and a

trend towards a decrease in rotarod performance as compared to

WT mice of the same age. Vertical rearings have been used in

some studies as a means of assessing motor abnormalities and

motivated locomotion [31]. Because this effect was more

pronounced with age, our data may indicate that the motor

disturbances brought on by a lack of peripheral serotonin may be

progressive. The current results are also consistent with previous

reports indicating that at approximately 3 months of age, Tph1

(2/2) mice demonstrate no deficits in basic locomotor activity

[32]. However, it should also be noted that these studies were not

conducted on older mice and these mice were derived on a mixed

Figure 3. Lack of peripheral serotonin does not result in attention impairment. Ability to learn the association between the stimulus light
and reward in WT and Tph1 (2/2) mice showed a strong trend indicating that aged Tph1 (2/2) mice may acquire this association more slowly,
however, overtime they demonstrated successful learning across daily sessions (A). Overall, aged mice of both genotypes showed a significant deficit
in performance during trials of 1 (**P,0.01) and 2 seconds (*P,0.05) (B).
doi:10.1371/journal.pone.0059032.g003
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C57BL/6 x 129 SvJ background, whereas our mice were bred

onto the C57BL/6J background.

Interestingly, the robust decrease in stride length found in the

Tph1 (2/2) is similar to that in a recently published C57BL/6J

mouse model of Parkinson’s disease using 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine to induce lesions of the substantia nigra

[28]. Morelli et al., moreover, recently showed that mice deficient

in the serotonin transporter (5-HTT2/2) also exhibited de-

creased stride length, and these studies were conducted using mice

on the 129S6 background [33]. This genetic deletion not only

affected neuronal serotonin uptake, but also uptake of peripheral

serotonin in platelets making the mice deficient in platelet

serotonin similar to the currently examined Tph1 (2/2) mice.

These mice also exhibited deficiencies in beam walk and rotarod

whereas the Tph1 (2/2) mice only displayed deficits in gait.

The finding of significantly decreased swing duration in both

young and aged Tph12/2 animals compared to WT is

intriguing. In contrast to stride length and stance duration, which

change in a speed dependent manner and are modified by primary

afferent sensory feedback, there is little variation in swing duration

[34]. Studies using neonatal brainstem spinal preparations have

demonstrated that serotonin modulates rhythmic locomotor-like

activity both when applied exogenously to the spinal cord [35] or

via endogenous release [36] involving 5HT7 and 5HT2A

receptors [37]. Questions remain whether structural changes

occur in the serotonergic-raphe spinal pathways of Tph1 (2/2)

during development, and/or during aging. Further studies are

necessary to identify whether changes in these systems underlie the

decreased swing duration in the Tph1 (2/2) mice.

Recent clinical studies have shown that mutations of the Tph1

gene rendering it less active are correlated with an increased

prevalence of ADHD in children by 1.5–2.5 fold, suggesting that

ADHD may be related to the lack of exposure to maternal

serotonin during gestation [38]. As these mutations decrease the

amount of maternal serotonin that the offspring are exposed to

during gestation, we hypothesized that Tph12/2 mice born from

knockout mothers could also develop a similar phenotype

including attention deficits. To test this, we utilized the recently

described 2-choice visual discrimination and attention test [24].

Although our results demonstrate a strong trend that aged Tph1

(2/2) mice may acquire the association between light and reward

at a slower rate (p = 0.06), each group demonstrated successful

learning across daily sessions. This result demonstrates that

hippocampal function in Tph1 (2/2) is preserved. This finding

is consistent with previous studies showing no changes in learning,

memory or motivation in offspring of mothers in which the SSRI

paroxetine (Paxil) was administered during gestation [39]. In

addition, Tph1 (2/2) mice showed no overt deficits in attention

performance as indicated by performance at the 1 and 2 second

stimulus durations. However, it should be noted that in the current

study there was a significant decrease in attention performance

between 2 to 8 months of age. This overall decrease in

performance at 8 months of age may have made it difficult to

determine an effect of genotype.

Previous results show that Tph1 (2/2) mice on the C57BL/6

background have no abnormalities in anxiety-related behaviors

tested in either the elevated plus maze or hold board task [2].

Deficits in social interaction are important early markers for

autism and related neurodevelopmental disorders, and previous

studies have shown social abnormalities in mice with attention

deficits [40]. Furthermore, disorders involving social interaction in

humans have been linked to abnormalities in serotonergic systems

[41,42] and it is established that autistic children have abnormal

gait dynamics such as decreased stride length [43]. Therefore, we

tested Tph1 (2/2) mice in a model of social novelty. We found no

differences in preference for social novelty in Tph1 (2/2) mice

compared to WT mice. It has been shown that anxiety/

compulsive behavior and depression-related disorder testing were

normal in Tph1 (2/2) mice [32].

As mentioned earlier, several abnormalities have been reported

in Tph1 (2/2) mice such as diabetes [18,19], decreased cardiac

function under anesthesia [4] and anemia [16,17] that could

potentially contribute to behavioral differences. Studies performed

on Tph1 (2/2) mice from our colony demonstrate that the mice

used for this work do not have increased blood glucose levels after

6-hour fasting. It is possible that differences in background strains

account for this discrepancy. We also did not find any differences

between .60 week old Tph1 (2/2) and WT mice in heart rate

and QRS interval duration indicating that these mice have normal

rhythm and ventricular depolarization, thus it is unlikely that

cardiac dysfunction plays a role in gait and rearing differences.

Mice used for these studies were not anesthetized during ECG

recordings. We have recently confirmed in our Tph1 (2/2) colony

that these mice have mild anemia, as previously reported [16,17]

however, it is unlikely to affect their gait.

Figure 4. Tph1 (2/2) mice have a normal response to social novelty. Tph1 (2/2) mice demonstrate similar responses to a stranger mouse (A)
and to a novel mouse (B). The percentage of time that the test mouse spent exploring stranger 1 was comparable to age-matched WT animals (A)
and the time that the test mouse spent exploring stranger 2 was comparable to age-matched WT mice (B).
doi:10.1371/journal.pone.0059032.g004
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Here, we report gait alterations and reduced motivated

locomotion in murine Tph1 (2/2) offspring born from knockout

mothers. As previous studies did not find developmental CNS

abnormalities in Tph1 (2/2) mice from Tph1 (+/2) and Tph1 (+/

+) mothers, we speculate that the behavioral differences in these

mice are mainly due to CNS abnormalities induced by lack of

maternal TPH1 exposure during gestation. In utero use of SSRIs

is a very understudied field even though these antidepressants are

commonly prescribed during pregnancy [44]. Our data support

the few studies showing that there may be adverse behavioral

affects associated with their use. As SSRI use is also known to

prevent platelet uptake of peripheral serotonin, there could be a

link between platelet storage of serotonin and behavioral

abnormalities that warrants further investigation.

Supporting Information

Figure S1 Tph1 (2/2) mice had normal fasting blood
glucose levels (A, B), heart rate (C) and QRS interval
duration (D).
(TIF)
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