3,591 research outputs found

    Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation

    Full text link
    Numerical simulations of the onset phase of continuous wave supercontinuum generation from modulation instability show that the structure of the field as it develops can be interpreted in terms of the properties of Akhmediev Breathers. Numerical and analytical results are compared with experimental measurements of spectral broadening in photonic crystal fiber using nanosecond pulsesComment: 22 pages, 6 figure

    Asymptotic enumeration of incidence matrices

    Full text link
    We discuss the problem of counting {\em incidence matrices}, i.e. zero-one matrices with no zero rows or columns. Using different approaches we give three different proofs for the leading asymptotics for the number of matrices with nn ones as n→∞n\to\infty. We also give refined results for the asymptotic number of i×ji\times j incidence matrices with nn ones.Comment: jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors

    Get PDF
    This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles

    Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation

    Full text link
    In this paper, we report the design and fabrication of a highly birefringent polarization-maintaining photonic crystal fiber (PM-PCF) made from chalcogenide glass, and its application to linearly-polarized supercontinuum (SC) generation in the mid-infrared region. The PM fiber was drawn using the casting method from As38Se62 glass which features a transmission window from 2 to 10 μm\mu m and a high nonlinear index of 1.13.10−17^{-17}m2^{2}W−1^{-1}. It has a zero-dispersion wavelength around 4.5 μm\mu m and, at this wavelength, a large birefringence of 6.10−4^{-4} and consequently strong polarization maintaining properties are expected. Using this fiber, we experimentally demonstrate supercontinuum generation spanning from 3.1-6.02 μm\mu m and 3.33-5.78 μm\mu m using femtosecond pumping at 4 μm\mu m and 4.53 μm\mu m, respectively. We further investigate the supercontinuum bandwidth versus the input pump polarization angle and we show very good agreement with numerical simulations of the two-polarization model based on two coupled generalized nonlinear Schr\"odinger equations.Comment: 13 pages, 8 figure

    Atmospheric Environmental Safety Technologies Project Atmospheric Hazard Safety Mitigation: Lightning and EM Effects Mitigation

    Get PDF
    This viewgraph presentation describes various lightning strike and electromagnetic sensing mitigation technologies to minimize flight safety risks

    Fundamental noise limitations to supercontinuum generation in microstructure fiber

    Full text link
    Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50 % for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schroedinger equation, finding good quantitative agreement over a range of input pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input pulse shot noise and the spontaneous Raman scattering down the fiber.Comment: 16 pages with 6 figure

    On the modulation instability development in optical fiber systems

    Full text link
    Extensive numerical simulations were performed to investigate all stages of modulation instability development from the initial pulse of pico-second duration in photonic crystal fiber: quasi-solitons and dispersive waves formation, their interaction stage and the further propagation. Comparison between 4 different NLS-like systems was made: the classical NLS equation, NLS system plus higher dispersion terms, NLS plus higher dispersion and self-steepening and also fully generalized NLS equation with Raman scattering taken into account. For the latter case a mechanism of energy transfer from smaller quasi-solitons to the bigger ones is proposed to explain the dramatical increase of rogue waves appearance frequency in comparison to the systems when the Raman scattering is not taken into account.Comment: 9 pages, 54 figure

    Influence of turbulence on the dynamo threshold

    Get PDF
    We use direct and stochastic numerical simulations of the magnetohydrodynamic equations to explore the influence of turbulence on the dynamo threshold. In the spirit of the Kraichnan-Kazantsev model, we model the turbulence by a noise, with given amplitude, injection scale and correlation time. The addition of a stochastic noise to the mean velocity significantly alters the dynamo threshold. When the noise is at small (resp. large) scale, the dynamo threshold is decreased (resp. increased). For a large scale noise, a finite correlation time reinforces this effect
    • …
    corecore