730 research outputs found

    Metastable Vacua in Brane Worlds

    Get PDF
    We analyze vacuum decay in brane world setups, where a free scalar field in five dimensions has a localized potential admitting metastable vacua. We study in particular the bounce solution and its properties in flat and warped spaces. In the latter case, placing into a deeply warped region the term in the potential that lifts the vacuum degeneracy, can increase indefinitely the lifetime of the false vacuum. We discuss the application to metastable vacua in supersymmetric brane-world constructions.Comment: LaTeX, 24 page

    On the origin of constrained superfields

    Get PDF
    In this work we analyze constrained superfields in supersymmetry and supergravity. We propose a constraint that, in combination with the constrained goldstino multiplet, consistently removes any selected component from a generic superfield. We also describe its origin, providing the operators whose equations of motion lead to the decoupling of such components. We illustrate our proposal by means of various examples and show how known constraints can be reproduced by our method.Comment: 20 pages, to be published in JHE

    Effective description of brane terms in extra dimensions

    Get PDF
    We study how theories defined in (extra-dimensional) spaces with localized defects can be described perturbatively by effective field theories in which the width of the defects vanishes. These effective theories must incorporate a ``classical'' renormalization, and we propose a renormalization prescription a la dimensional regularization for codimension 1, which can be easily used in phenomenological applications. As a check of the validity of this setting, we compare some general predictions of the renormalized effective theory with those obtained in a particular ultraviolet completion based on deconstruction.Comment: 28 page

    Beyond MFV in family symmetry theories of fermion masses

    Get PDF
    Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.Comment: 34 pages, no figure

    The vacuum structure in a supersymmetric gauged Nambu-Jona-Lasinio model

    Full text link
    The dynamical breakdown of the SU(2)×U(1)SU(2) \times U(1) symmetry triggered by a top-antitop condensate is studied in a supersymmetric version of the gauged Nambu-Jona-Lasinio model. An effective potential approach is used to investigate the vacuum structure and the equivalence with the minimal supersymmetric standard model. The role of the soft supersymmetry breaking terms is analyzed in detail in a version of the model where the electroweak gauge interactions are turned off.Comment: 32 pages (+2 figures not included), Latex, LPTHE 93/0

    Flavour in supersymmetry: horizontal symmetries or wave function renormalisation

    Get PDF
    We compare theoretical and experimental predictions of two main classes of models addressing fermion mass hierarchies and flavour changing neutral currents (FCNC) effects in supersymmetry: Froggatt-Nielsen (FN) U(1) gauged flavour models and Nelson-Strassler/extra dimensional models with hierarchical wave functions for the families. We show that whereas the two lead to identical predictions in the fermion mass matrices, the second class generates a stronger suppression of FCNC effects. We prove that, whereas at first sight the FN setup is more constrained due to anomaly cancelation conditions, imposing unification of gauge couplings in the second setup generates conditions which precisely match the mixed anomaly constraints in the FN setup. Finally, we provide an economical extra dimensional realisation of the hierarchical wave functions scenario in which the leptonic FCNC can be efficiently suppressed due to the strong coupling (CFT) origin of the electron mass.Comment: 23 page

    A Rationale for Long-lived Quarks and Leptons at the LHC: Low Energy Flavour Theory

    Get PDF
    In the framework of gauged flavour symmetries, new fermions in parity symmetric representations of the standard model are generically needed for the compensation of mixed anomalies. The key point is that their masses are also protected by flavour symmetries and some of them are expected to lie way below the flavour symmetry breaking scale(s), which has to occur many orders of magnitude above the electroweak scale to be compatible with the available data from flavour changing neutral currents and CP violation experiments. We argue that, actually, some of these fermions would plausibly get masses within the LHC range. If they are taken to be heavy quarks and leptons, in (bi)-fundamental representations of the standard model symmetries, their mixings with the light ones are strongly constrained to be very small by electroweak precision data. The alternative chosen here is to exactly forbid such mixings by breaking of flavour symmetries into an exact discrete symmetry, the so-called proton-hexality, primarily suggested to avoid proton decay. As a consequence of the large value needed for the flavour breaking scale, those heavy particles are long-lived and rather appropriate for the current and future searches at the LHC for quasi-stable hadrons and leptons. In fact, the LHC experiments have already started to look for them.Comment: 10 pages, 1 figur

    Gaugino Condensation in M-theory on S^1/Z_2

    Get PDF
    In the low energy limit of for M-theory on S^1/Z_2, we calculate the gaugino condensate potential in four dimensions using the background solutions due to Horava. We show that this potential is free of delta-function singularities and has the same form as the potential in the weakly coupled heterotic string. A general flux quantization rule for the three-form field of M-theory on S^1/Z_2 is given and checked in certain limiting cases. This rule is used to fix the free parameter in the potential originating from a zero mode of the form field. Finally, we calculate soft supersymmetry breaking terms. We find that corrections to the Kahler potential and the gauge kinetic function, which can be large in the strongly coupled region, contribute significantly to certain soft terms. In particular, for supersymmetry breaking in the T-modulus direction, the small values of gaugino masses and trilinear couplings that occur in the weakly coupled, large radius regime are enhanced to order m_3/2 in M-theory. The scalar soft masses remain small even, in the strong coupling M-theory limit.Comment: 20 pages, LATE

    CMB Imprints of a Pre-Inflationary Climbing Phase

    Get PDF
    We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounces against a steep exponential potential of "brane SUSY breaking" scenarios, and as a result the ensuing descent gives rise to an inflationary epoch that begins when the system is still well off its eventual attractor. If a pre-inflationary climbing phase of this type had occurred within 6-7 e-folds of the horizon exit for the largest observable wavelengths, displacement off the attractor and initial-state effects would conspire to suppress power in the primordial scalar spectrum, enhancing it in the tensor spectrum and typically superposing oscillations on both. We investigate these imprints on CMB observables over a range of parameters, examine their statistical significance, and provide a semi-analytic rationale for our results. It is tempting to ascribe at least part of the large-angle anomalies in the CMB to pre-inflationary dynamics of this type.Comment: 38 pages, LaTeX, 11 eps figures, references added, matches version to appear in JCA
    • 

    corecore