8,002 research outputs found
Anisotropic Electron Spin Lifetime in (In,Ga)As/GaAs (110) Quantum Wells
Anisotropic electron spin lifetimes in strained undoped (In,Ga)As/GaAs (110)
quantum wells of different width and height are investigated by time-resolved
Faraday rotation and time-resolved transmission and are compared to the
(001)-orientation. From the suppression of spin precession, the ratio of
in-plane to out-of-plane spin lifetimes is calculated. Whereas the ratio
increases with In concentration in agreement with theory, a surprisingly high
anisotropy of 480 is observed for the broadest quantum well, when expressed in
terms of spin relaxation times.Comment: 4 pages, 4 figures, revise
Intrinsic nonlinearity and spectral structure of internal tides at an idealized Mid-Atlantic Bight shelf break
Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2641–2660, doi:10.1175/JPO-D-12-0239.1.To quantify dynamical aspects of internal-tide generation at the Mid-Atlantic Bight shelf break, this study employs an idealized ocean model initialized by climatological summertime stratification and forced by monochromatic barotropic tidal currents at the offshore boundary. The Froude number of the scenario is subunity, and the bathymetric slope offshore of the shelf break is supercritical. A barotropic-to-baroclinic energy conversion rate of 335 W m−1 is found, with 14% of the energy locally dissipated through turbulence and bottom friction and 18% radiated onto the shelf. Consistent with prior studies, nonlinear effects result in additional super- and subharmonic internal waves at the shelf break. The subharmonic waves are subinertial, evanescent, and mostly trapped within a narrow beam of internal waves at the forcing frequency. They likely result from nonresonant triad interaction associated with strong nonlinearity. Strong vertical shear associated with the subharmonic waves tends to enhance local energy dissipation and turbulent momentum exchange (TME). A simulation with reduced tidal forcing shows an expected diminished level of harmonic energy. A quasi-linear simulation verifies the role of momentum advection in controlling the relative phases of internal tides and the efficiency of barotropic-to-baroclinic energy conversion. The local TME is tightly coupled with the internal-wave dynamics: for the chosen configuration, neglecting TME causes the internal-wave energy to be overestimated by 12%, and increasing it to high levels damps the waves on the continental shelf. This work implies a necessity to carefully consider nonlinearity and turbulent processes in the calculation of internal tidal waves generated at the shelf break.This research was supported by Office of
Naval Research Grant N00014-11-1-0701.2014-06-0
Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment
The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers.We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes.We further demonstrate the model performance of MPAS in terms of ist capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3 km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3 km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities
Parsimonious Kernel Fisher Discrimination
By applying recent results in optimization transfer, a new algorithm for kernel Fisher Discriminant Analysis is provided that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The algorithm is simple, easily programmed and is shown to perform as well as or better than a number of leading machine learning algorithms on a substantial benchmark. It is then applied to a set of extreme small-sample-size problems in virtual screening where it is found to be less accurate than a currently leading approach but is still comparable in a number of cases
Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering
We propose a new pattern recognition method that is able to reconstruct the
3D structure of the active part of a fault network using the spatial location
of earthquakes. The method is a generalization of the so-called dynamic
clustering method, that originally partitions a set of datapoints into
clusters, using a global minimization criterion over the spatial inertia of
those clusters. The new method improves on it by taking into account the full
spatial inertia tensor of each cluster, in order to partition the dataset into
fault-like, anisotropic clusters. Given a catalog of seismic events, the output
is the optimal set of plane segments that fits the spatial structure of the
data. Each plane segment is fully characterized by its location, size and
orientation. The main tunable parameter is the accuracy of the earthquake
localizations, which fixes the resolution, i.e. the residual variance of the
fit. The resolution determines the number of fault segments needed to describe
the earthquake catalog, the better the resolution, the finer the structure of
the reconstructed fault segments. The algorithm reconstructs successfully the
fault segments of synthetic earthquake catalogs. Applied to the real catalog
constituted of a subset of the aftershocks sequence of the 28th June 1992
Landers earthquake in Southern California, the reconstructed plane segments
fully agree with faults already known on geological maps, or with blind faults
that appear quite obvious on longer-term catalogs. Future improvements of the
method are discussed, as well as its potential use in the multi-scale study of
the inner structure of fault zones
Modeling and analysis of internal-tide generation and beamlike onshore propagation in the vicinity of shelfbreak canyons
Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.All three authors were supported by Office
of Naval Research (ONR) Grant N00014-11-1-0701.
WGZ was additionally supported by the National Science
Foundation (NSF) Grant OCE-1154575, and TFD
was additionally supported by NSF Grant OCE-1060430.2014-09-0
Steps towards a map of the nearby universe
We present a new analysis of the Sloan Digital Sky Survey data aimed at
producing a detailed map of the nearby (z < 0.5) universe. Using neural
networks trained on the available spectroscopic base of knowledge we derived
distance estimates for about 30 million galaxies distributed over ca. 8,000 sq.
deg. We also used unsupervised clustering tools developed in the framework of
the VO-Tech project, to investigate the possibility to understand the nature of
each object present in the field and, in particular, to produce a list of
candidate AGNs and QSOs.Comment: 3 pages, 1 figure. To appear in Nucl Phys. B, in the proceedings of
the NOW-2006 (Neutrino Oscillation Workshop - 2006), R. Fogli et al. ed
- …