113 research outputs found

    Chapter 2. Climate change in the Mediterranean region

    Get PDF
    La rĂ©gion mĂ©diterranĂ©enne est reconnue comme Ă©tant une des rĂ©gions au monde particuliĂšrement sensible au changement climatique. Plusieurs raisons expliquent cette forte sensibilitĂ© du cycle de l’eau en MĂ©diterranĂ©e au changement climatique. Tout d’abord, le bassin mĂ©diterranĂ©en se trouve dans une zone de transition entre le climat tempĂ©rĂ© des latitudes moyennes et le climat plus chaud et sec de l’Afrique du Nord. Un autre facteur d’explication provient de ses caractĂ©ristiques gĂ©ographiques, i.e. une mer semi-fermĂ©e entourĂ©e de montagnes et de rĂ©gions littorales trĂšs urbanisĂ©es. Ces facteurs climatiques, gĂ©ographiques et anthropiques contribuent aussi Ă  la forte variabilitĂ© spatiale et temporelle des conditions climatiques, ocĂ©aniques et hydrologiques rencontrĂ©es en MĂ©diterranĂ©e. L’analyse des tendances observĂ©es des moyennes annuelles sur le dernier demi-siĂšcle montre des Ă©volutions des composantes du cycle de l’eau en MĂ©diterranĂ©e avec, globalement en MĂ©diterranĂ©e, une augmentation de la tempĂ©rature, une diminution des prĂ©cipitations et des apports des fleuves Ă  la mer, et une augmentation de l’évaporation. Les projections climatiques des modĂšles globaux ou rĂ©gionaux du climat indiquent que ce rĂ©chauffement et assĂšchement va se poursuivre, avec une amplitude de ces changements qui dĂ©pend principalement aprĂšs 2050 du scĂ©nario d’émission. Les projections climatiques indiquent aussi une augmentation en frĂ©quence et intensitĂ© des vagues de chaleur. NĂ©anmoins, la distribution spatiale dĂ©taillĂ©e des changements en tempĂ©rature, et encore plus des changements en prĂ©cipitation, demeure encore incertaine. Les modĂšles de climat prĂ©voient clairement une augmentation de la tempĂ©rature de la mer en surface sous l’effet du changement climatique, qui se propage aux couches profondes ocĂ©aniques. Il est attendu que la circulation thermohaline de la MĂ©diterranĂ©e va Ă©voluer sous l’effet de ce rĂ©chauffement de la mer et des changements encore incertains de la salinitĂ©. Les Ă©changes de chaleur et d’eau au dĂ©troit de Gibraltar devraient aussi ĂȘtre modifiĂ©s en consĂ©quence, et donc la source de chaleur et de sel que reprĂ©sente la mer MĂ©diterranĂ©e pour l’Atlantique Nord. Il n’y a cependant pas Ă  ce jour de consensus entre les modĂšles sur les caractĂ©ristiques d’évolution de la circulation thermohaline de la MĂ©diterranĂ©e et des Ă©changes avec l’OcĂ©an Atlantique

    Utilização de simulaçÔes numéricas como apoio no estudo de precipitação na Ilha da Madeira (Portugal)

    Get PDF
    The Madeira is a small mountainous island (~740 km2) located in the North Atlantic Ocean (32°75'N and 17°00'W), and after the disaster occurred on 20 February 2010, when extreme precipitation induced flash floods and landslides in some spots of the island, efforts have been directed toward the understanding of the precipitation affecting the island. The occurrence of extreme precipitation in three seasons in the last years have raised questions mainly about the atmospheric conditions that may lead to the development of intense precipitation with high impact at the surface. Our goals in this work are to identify and describe the large- and meso- scale features associated to four periods of significant accumulated precipitation during the autumn 2012. The precipitation recorded by the Madeira meteorological network is analyzed, as well as satellite images in order to describe the characteristics of the precipitation systems that reached the Madeira in each period. The synoptic scale conditions are described thank to the 6-hourly ARPEGE operational analyses. The four periods were associated with different large-scale precipitating systems. The mesoscale environment and precipitating systems have been then studied thank to very-high resolution numerical simulations using the MESO-NH non-hydrostatic model. The numerical experiments were carried out using as initial and boundary conditions the ARPEGE analyses. The model was configured in two two-way nested domains: the larger domain with a grid spacing of 2.5 km and 600x500 points, and the inner domain, with 600x600 grid points and an horizontal resolution of 0.5 km. The simulations compared well with the rain gauge observations over the island. The simulation shows a strong impact of the mountainous island on the spatial distribution and volume of precipitation. The 500 m resolution simulation evidences the relationship between the local topography and precipitation

    Chapter 3. Hydro-meteorological extremes

    Get PDF
    Les rĂ©gions mĂ©diterranĂ©ennes sont particuliĂšrement soumises aux risques hydromĂ©tĂ©orologiques, comme les pluies intenses et les crues rapides, les tempĂȘtes induisant des submersions marines et des fortes houles, les vagues de chaleur et les sĂ©cheresses favorisant les feux de forĂȘts. L’intensitĂ© et la frĂ©quence de ces Ă©vĂ©nements hydromĂ©tĂ©orologiques extrĂȘmes sont susceptibles d’évoluer sous l’effet du changement climatique. L’analyse de ces Ă©vĂ©nements extrĂȘmes repose sur l’observation, l’analyse de donnĂ©es et la modĂ©lisation numĂ©rique afin d’interprĂ©ter et d’extrapoler les observations et de prĂ©voir les Ă©volutions Ă  venir. L’étude des extrĂȘmes est cependant une tĂąche particuliĂšrement complexe. Les Ă©vĂ©nements extrĂȘmes sont rares par nature. Les bases de donnĂ©es disponibles ne s’enrichissent donc que trĂšs progressivement. Ces Ă©vĂ©nements sont par ailleurs souvent caractĂ©risĂ©s par de fortes hĂ©tĂ©rogĂ©nĂ©itĂ©s spatiales et temporelles que les rĂ©seaux de mesure existants peuvent difficilement capturer prĂ©cisĂ©ment. La mesure de valeurs exceptionnellement Ă©levĂ©es, pour lesquelles les rĂ©seaux de mesure n’ont pas Ă©tĂ© conçus et ajustĂ©s, peut aussi ĂȘtre entachĂ©e d’incertitudes importantes. Tout ceci explique notre niveau de connaissance encore aujourd’hui imparfait et les conclusions parfois contradictoires des Ă©tudes scientifiques sur les Ă©volutions passĂ©es et futures. Nos connaissances ont cependant fortement progressĂ© ces derniĂšres annĂ©es grĂące Ă  un certain nombre de programmes de recherche dĂ©diĂ©s et Ă  la mise en place de bases de donnĂ©es partagĂ©es. Ce chapitre prĂ©sente l’état des connaissances sur les phĂ©nomĂšnes extrĂȘmes hydro-climatiques autour de la MĂ©diterranĂ©e, leur rĂ©partition gĂ©ographique et saisonniĂšre, leurs Ă©volutions passĂ©es et Ă  venir. Les questions non rĂ©solues et les incertitudes sont aussi exposĂ©es et discutĂ©es

    A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory CĂ©vennes-Vivarais (south-eastern France)

    Get PDF
    International audienceThe Mediterranean hydrometeorological observatory CĂ©vennes-Vivarais (OHM-CV) coordinates hydrometeorological observations (radars, rain gauges, water level stations) on a regional scale in southeastern France. In the framework of OHM-CV, temporary GPS measurements have been carried out for 2 months in autumn 2002, when the heaviest rainfall are expected. These measurements increase the spatial density of the existing permanent GPS network, by adding three more receivers between the Mediterranean coast and the CĂ©vennes-Vivarais range to monitor maritime source of water vapour flow feeding the precipitating systems over the CĂ©vennes-Vivarais region. In addition, a local network of 18 receivers covered an area of 30 by 30 km within the field of view of the meteorological radar. These regional and local networks of permanent and temporary stations are used to monitor the precipitable water vapour (PWV) with high temporal resolution (15 min). Also, the dense local network provided data which have been inverted using tomographic techniques to obtain the 3-D field of tropospheric water vapour content. This study presents methodological tests for retrieving GPS tropospheric observations from dense networks, with the aim of assessing the uncertainties of GPS retrievals. Using optimal tropospheric GPS retrieval methods, high resolution measurements of PWV on a local scale (a few kilometres) are discussed for rain events. Finally, the results of 3-D fields of water vapour densities from GPS tomography are analysed with respect to precipitation fields derived from a meteorological radar, showing a good correlation between precipitation and water vapour depletion areas

    The 8 and 9 September 2002 flash flood event in France: a model intercomparison

    Get PDF
    Within the framework of the European Interreg IIIb Medocc program, the HYDROPTIMET project aims at the optimization of the hydrometeorological forecasting tools in the context of intense precipitation within complex topography. Therefore, some meteorological forecast models and hydrological models were tested on four Mediterranean flash-flood events. One of them occured in France where the South-eastern ridge of the French “Massif Central”, the Gard region, experienced a devastating flood on 8 and 9 September 2002. 24 people were killed during this event and the economic damage was estimated at 1.2 billion euros. To built the next generation of the hydrometeorological forecasting chain that will be able to capture such localized and fast events and the resulting discharges, the forecasted rain fields might be improved to be relevant for hydrological purposes. In such context, this paper presents the results of the evaluation methodology proposed by Yates et al. (2005) that highlights the relevant hydrological scales of a simulated rain field. Simulated rain fields of 7 meteorological model runs concerning with the French event are therefore evaluated for different accumulation times. The dynamics of these models are either based on non-hydrostatic or hydrostatic equation systems. Moreover, these models were run under different configurations (resolution, initial conditions). The classical score analysis and the areal evaluation of the simulated rain fields are then performed in order to put forward the main simulation characteristics that improve the quantitative precipitation forecast. The conclusions draw some recommendations on the value of the quantitative precipitation forecasts and way to use it for quantitative discharge forecasts within mountainous areas

    Juvenile neuropsychiatric systemic lupus erythematosus: identification of novel central neuroinflammation biomarkers

    Get PDF
    International audienceIntroduction Juvenile systemic lupus erythematosus (j-SLE) is a rare chronic autoimmune disease affecting multiple organs. Ranging from minor features, such as headache or mild cognitive impairment, to serious and life-threatening presentations, j-neuropsychiatric SLE (j-NPSLE) is a therapeutic challenge. Thus, the diagnosis of NPSLE remains difficult, especially in pediatrics, with no specific biomarker of the disease yet validated. Objectives To identify central nervous system (CNS) disease biomarkers of j-NPSLE. Methods A 5-year retrospective tertiary reference monocentric j-SLE study. A combination of standardized diagnostic criteria and multidisciplinary pediatric clinical expertise was combined to attribute NP involvement in the context of j-SLE. Neopterin and interferon-alpha (IFN-α) protein levels in cerebrospinal fluid (CSF) were assessed, together with routine biological and radiological investigations. Results Among 51 patients with j-SLE included, 39% presented with j-NPSLE. J-NPSLE was diagnosed at onset of j-SLE in 65% of patients. No specific routine biological or radiological marker of j-NPSLE was identified. However, CSF neopterin levels were significantly higher in active j-NPSLE with CNS involvement than in j-SLE alone ( p = 0.0008). Neopterin and IFN-α protein levels in CSF were significantly higher at diagnosis of j-NPSLE with CNS involvement than after resolution of NP features (respectively p = 0.0015 and p = 0.0010) upon immunosuppressive treatment in all patients tested ( n = 10). Both biomarkers correlated strongly with each other ( R s = 0.832, p < 0.0001, n = 23 paired samples). Conclusion CSF IFN-α and neopterin constitute promising biomarkers useful in the diagnosis and monitoring of activity in j-NPSLE

    HyMeX: A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle

    Get PDF
    Drobinski, P. ... et. al.-- 20 pages, 10 figures, 1 table, supplement material http://journals.ametsoc.org/doi/suppl/10.1175/BAMS-D-12-00244.1HyMeX strives to improve our understanding of the Mediterranean water cycle, its variability from the weather-scale events to the seasonal and interannual scales, and its characteristics over one decade (2010–20), with a special focus on hydrometeorological extremes and the associated social and economic vulnerability of the Mediterranean territoriesHyMeX was developed by an international group of scientists and is currently funded by a large number of agencies. It has been the beneficiary of financial contributions from CNRS; MĂ©tĂ©o-France; CNES; IRSTEA; INRA; ANR; CollectivitĂ© Territoriale de Corse; KIT; CNR; UniversitĂ© de Toulouse; Grenoble UniversitĂ©s; EUMETSAT; EUMETNET; AEMet; UniversitĂ© Blaise Pascal, Clermont Ferrand; UniversitĂ© de la MĂ©diterranĂ©e (Aix-Marseille II); UniversitĂ© Montpellier 2; CETEMPS; Italian Civil Protection Department; UniversitĂ© Paris- Sud 11; IGN; EPFL; NASA; New Mexico Tech; IFSTTAR; Mercator Ocean; NOAA; ENEA; TU Delft; CEA; ONERA; IMEDEA; SOCIB; ETH; MeteoCat; Consorzio LAMMA; IRD; National Observatory of Athens; Ministerio de Ciencia e InnovaciĂłn; CIMA; BRGM; Wageningen University and Research Center; Department of Geophysics, University of Zagreb; Institute of Oceanography and Fisheries, Split, Croatia; INGV; OGS; Maroc MĂ©tĂ©o; DHMZ; ARPA Piemonte; ARPA-SIMC Emilia-Romagna; ARPA Calabria; ARPA Friuli Venezia Giulia; ARPA Liguria; ISPRA; University of Connecticut; UniversitĂ  degli Studi dell'Aquila; UniversitĂ  di Bologna; UniversitĂ  degli Studi di Torino; UniversitĂ  degli Studi della Basilicata; UniversitĂ  La Sapienza di Roma; UniversitĂ  degli Studi di Padova; UniversitĂ  del Salento; Universitat de Barcelona; Universitat de les Illes Balears; Universidad de Castilla-La Mancha; Universidad Complutense de Madrid; MeteoSwiss; and DLR. It also received support from the European Community's Seventh Framework Programme (e.g., PERSEUS, CLIM-RUN)Peer reviewe

    Chapter 2. Climate change in the Mediterranean region

    No full text
    La rĂ©gion mĂ©diterranĂ©enne est reconnue comme Ă©tant une des rĂ©gions au monde particuliĂšrement sensible au changement climatique. Plusieurs raisons expliquent cette forte sensibilitĂ© du cycle de l’eau en MĂ©diterranĂ©e au changement climatique. Tout d’abord, le bassin mĂ©diterranĂ©en se trouve dans une zone de transition entre le climat tempĂ©rĂ© des latitudes moyennes et le climat plus chaud et sec de l’Afrique du Nord. Un autre facteur d’explication provient de ses caractĂ©ristiques gĂ©ographiques, i. e. une mer semi-fermĂ©e entourĂ©e de montagnes et de rĂ©gions littorales trĂšs urbanisĂ©es. Ces facteurs climatiques, gĂ©ographiques et anthropiques contribuent aussi Ă  la forte variabilitĂ© spatiale et temporelle des conditions climatiques, ocĂ©aniques et hydrologiques rencontrĂ©es en MĂ©diterranĂ©e.L’analyse des tendances observĂ©es des moyennes annuelles sur le dernier demi-siĂšcle montre des Ă©volutions des composantes du cycle de l’eau en MĂ©diterranĂ©e avec, globalement en MĂ©diterranĂ©e, une augmentation de la tempĂ©rature, une diminution des prĂ©cipitations et des apports des fleuves Ă  la mer, et une augmentation de l’évaporation. Les projections climatiques des modĂšles globaux ou rĂ©gionaux du climat indiquent que ce rĂ©chauffement et assĂšchement va se poursuivre, avec une amplitude de ces changements qui dĂ©pend principalement aprĂšs 2050 du scĂ©nario d’émission. Les projections climatiques indiquent aussi une augmentation en frĂ©quence et intensitĂ© des vagues de chaleur. NĂ©anmoins, la distribution spatiale dĂ©taillĂ©e des changements en tempĂ©rature, et encore plus des changements en prĂ©cipitation, demeure encore incertaine.Les modĂšles de climat prĂ©voient clairement une augmentation de la tempĂ©rature de la mer en surface sous l’effet du changement climatique, qui se propage aux couches profondes ocĂ©aniques. Il est attendu que la circulation thermohaline de la MĂ©diterranĂ©e va Ă©voluer sous l’effet de ce rĂ©chauffement de la mer et des changements encore incertains de la salinitĂ©. Les Ă©changes de chaleur et d’eau au dĂ©troit de Gibraltar devraient aussi ĂȘtre modifiĂ©s en consĂ©quence, et donc la source de chaleur et de sel que reprĂ©sente la mer MĂ©diterranĂ©e pour l’Atlantique Nord. Il n’y a cependant pas Ă  ce jour de consensus entre les modĂšles sur les caractĂ©ristiques d’évolution de la circulation thermohaline de la MĂ©diterranĂ©e et des Ă©changes avec l’OcĂ©an Atlantique
    • 

    corecore