89 research outputs found

    Preoperative Teleconsultation Visits are as Efficient as In-person Appointments in Avoiding Unnecessary Cancellation of Elective Surgical Procedures

    Get PDF
    The COVID-19 pandemic has presented many challenges in health care, not the least of which was the need to find alternatives to an in-person evaluation to reduce the risk of transmission of the virus. Despite the discontinuation of elective procedures at Thomas Jefferson University Hospital in Philadelphia (TJUH), Pennsylvania in March 2020, there was a subset of patients that required urgent surgical procedures. Consequently, there needed to be a different approach to the presurgical assessment of these patients. At our institution teleconsultation had gained acceptance by patients and providers prior to the COVID-19 pandemic, therefore a program was rapidly developed utilizing teleconsultation to assess these patients. The question we sought to answer was, in patients undergoing surgery, does completing the preoperative surgical consult through teleconsultation affect the cancellation rate on the day of surgery? Definitions - Teleconsultation – refers to synchronous visits in which a nurse practitioner or physician interfaces in real-time with a patient by video-conferencing. - Medically Optimized – patient completed the pre-admission testing process and was deemed an acceptable risk for surgery

    Effectiveness of GenoType MTBDRsl in excluding TB drug resistance in a clinical trial

    Get PDF
    OBJECTIVES: To assess the performance of the GenoType MTBDRsl v1, a line-probe assay (LPA), to exclude baseline resistance to fluoroquinolones (FQs) and second-line injectables (SLIs) in the Standard Treatment Regimen of Anti-tuberculosis Drugs for Patients With MDR-TB 1 (STREAM 1) trial. METHODS: Direct sputum MTBDRsl results in the site laboratories were compared to indirect phenotypic drug susceptibility testing (pDST) results in the central laboratory, with DNA sequencing as a reference standard. RESULTS: Of 413 multidrug-resistant TB (MDR-TB) patients tested using MTBDRsl and pDST, 389 (94.2%) were FQ-susceptible and 7 (1.7%) FQ-resistant, while 17 (4.1%) had an inconclusive MTBDRsl result. For SLI, 372 (90.1%) were susceptible, 5 (1.2%) resistant and 36 (8.7%) inconclusive. There were 9 (2.3%) FQ discordant pDST/MTBDRsl results, of which 3 revealed a mutation and 5 (1.3%) SLI discordant pDST/MTBDRsl results, none of which were mutants on sequencing. Among the 17 FQ- and SLI MTBDRsl-inconclusive samples, sequencing showed 1 FQ- and zero SLI-resistant results, similar to frequencies among the conclusive MTBDRsl. The majority of inconclusive MTBDRsl results were associated with low bacillary load samples (acid-fast bacilli smear-negative or scantily positive) compared to conclusive results (P < 0.001). CONCLUSION: MTBDRsl can facilitate the rapid exclusion of FQ and SLI resistances for enrolment in clinical trials

    Role for Non-Proteolytic Control of M-phase Promoting Factor Activity at M-phase Exit

    Get PDF
    M-phase Promoting Factor (MPF; the cyclin B-cdk 1 complex) is activated at M-phase onset by removal of inhibitory phosphorylation of cdk1 at thr-14 and tyr-15. At M-phase exit, MPF is destroyed by ubiquitin-dependent cyclin proteolysis. Thus, control of MPF activity via inhibitory phosphorylation is believed to be particularly crucial in regulating transition into, rather than out of, M-phase. Using the in vitro cell cycle system derived form Xenopus eggs, here we show, however, that inhibitory phosphorylation of cdk1 contributes to control MPF activity during M-phase exit. By sampling extracts at very short intervals during both meiotic and mitotic exit, we found that cyclin B1-associated cdk1 underwent transient inhibitory phosphorylation at tyr-15 and that cyclin B1-cdk1 activity fell more rapidly than the cyclin B1 content. Inhibitory phosphorylation of MPF correlated with phosphorylation changes of cdc25C, the MPF phosphatase, and physical interaction of cdk1 with wee1, the MPF kinase, during M-phase exit. MPF down-regulation required Ca(++)/calmodulin-dependent kinase II (CaMKII) and cAMP-dependent protein kinase (PKA) activities at meiosis and mitosis exit, respectively. Treatment of M-phase extracts with a mutant cyclin B1-cdk1AF complex, refractory to inhibition by phosphorylation, impaired binding of the Anaphase Promoting Complex/Cyclosome (APC/C) to its co-activator Cdc20 and altered M-phase exit. Thus, timely M-phase exit requires a tight coupling of proteolysis-dependent and proteolysis-independent mechanisms of MPF inactivation

    Time-resolved imaging of magnetic vortex dynamics using holography with extended reference autocorrelation by linear differential operator

    Get PDF
    The magnetisation dynamics of the vortex core and Landau pattern of magnetic thin-film elements has been studied using holography with extended reference autocorrelation by linear differential operator (HERALDO). Here we present the first time-resolved x-ray measurements using this technique and investigate the structure and dynamics of the domain walls after excitation with nanosecond pulsed magnetic fields. It is shown that the average magnetisation of the domain walls has a perpendicular component that can change dynamically depending on the parameters of the pulsed excitation. In particular, we demonstrate the formation of wave bullet-like excitations, which are generated in the domain walls and can propagate inside them during the cyclic motion of the vortex core. Based on numerical simulations we also show that, besides the core, there are four singularities formed at the corners of the pattern. The polarisation of these singularities has a direct relation to the vortex core, and can be switched dynamically by the wave bullets excited with a magnetic pulse of specific parameters. The subsequent dynamics of the Landau pattern is dependent on the particular configuration of the polarisations of the core and the singularities

    One Problem, Many Solutions: Simple Statistical Approaches Help Unravel the Complexity of the Immune System in an Ecological Context

    Get PDF
    The immune system is a complex collection of interrelated and overlapping solutions to the problem of disease. To deal with this complexity, researchers have devised multiple ways to measure immune function and to analyze the resulting data. In this way both organisms and researchers employ many tactics to solve a complex problem. One challenge facing ecological immunologists is the question of how these many dimensions of immune function can be synthesized to facilitate meaningful interpretations and conclusions. We tackle this challenge by employing and comparing several statistical methods, which we used to test assumptions about how multiple aspects of immune function are related at different organizational levels. We analyzed three distinct datasets that characterized 1) species, 2) subspecies, and 3) among- and within-individual level differences in the relationships among multiple immune indices. Specifically, we used common principal components analysis (CPCA) and two simpler approaches, pair-wise correlations and correlation circles. We also provide a simple example of how these techniques could be used to analyze data from multiple studies. Our findings lead to several general conclusions. First, relationships among indices of immune function may be consistent among some organizational groups (e.g. months over the annual cycle) but not others (e.g. species); therefore any assumption of consistency requires testing before further analyses. Second, simple statistical techniques used in conjunction with more complex multivariate methods give a clearer and more robust picture of immune function than using complex statistics alone. Moreover, these simpler approaches have potential for analyzing comparable data from multiple studies, especially as the field of ecological immunology moves towards greater methodological standardization

    Identification of the Allosteric Regulatory Site of Insulysin

    Get PDF
    Background: Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Ab peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP.Principal Findings: the crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. in addition, changes in the dimer interface suggest a basis for communication between subunits.Conclusions/Significance: Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.United States Public Health ServicesUniv Kentucky, Dept Mol & Cellular Biochem, Lexington, KY 40536 USAUniv Kentucky, Struct Biol Ctr, Lexington, KY USAUniversidade Federal de São Paulo, Dept Biophys, Escola Paulista Med, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, Escola Paulista Med, São Paulo, BrazilUnited States Public Health Services: NS38041United States Public Health Services: DA02243United States Public Health Services: DA016176United States Public Health Services: P20 RR20171United States Public Health Services: T32 DA016176Web of Scienc

    The effects of precision teaching and self-regulation learning on early multiplication fluency

    Get PDF
    Fluent recall of basic facts is essential to the development of more complex math skills. Therefore, failure to develop fluency with basic facts may impede the development of these skills. The present study used a between groups experimental design to investigate whether a basic facts fluency program, implemented within a self-regulated learner (SRL) framework, could lead to increased fluency with multiplication facts for Year 5 and Year 6 New Zealand students (9–10 years old). This study also investigated the extent to which the SRL program altered students’ basic facts practice behavior outside of school hours. The study found that the SRL program resulted in rapid fluency development that was maintained over time. Nomothetic and idiographic analysis confirmed that the program was suitable for use within Tier 1 of the response to intervention framework. In addition, the study also found that students who received the program altered their practice behavior outside school hours. The results from this study show how elements of self-regulated learning and precision teaching can be successfully combined to enhance students’ mathematics achievement

    Survivors of intensive care with type 2 diabetes and the effect of shared care follow-up clinics: study protocol for the SWEET-AS randomised controlled feasibility study

    Get PDF
    Published online: 13 October 2016Background: Many patients who survive the intensive care unit (ICU) experience long-term complications such as peripheral neuropathy and nephropathy which represent a major source of morbidity and affect quality of life adversely. Similar pathophysiological processes occur frequently in ambulant patients with diabetes mellitus who have never been critically ill. Some 25 % of all adult ICU patients have diabetes, and it is plausible that ICU survivors with co-existing diabetes are at heightened risk of sequelae from their critical illness. ICU follow-up clinics are being progressively implemented based on the concept that interventions provided in these clinics will alleviate the burdens of survivorship. However, there is only limited information about their outcomes. The few existing studies have utilised the expertise of healthcare professionals primarily trained in intensive care and evaluated heterogenous cohorts. A shared care model with an intensivist- and diabetologist-led clinic for ICU survivors with type 2 diabetes represents a novel targeted approach that has not been evaluated previously. Prior to undertaking any definitive study, it is essential to establish the feasibility of this intervention. Methods: This will be a prospective, randomised, parallel, open-label feasibility study. Eligible patients will be approached before ICU discharge and randomised to the intervention (attending a shared care follow-up clinic 1 month after hospital discharge) or standard care. At each clinic visit, patients will be assessed independently by both an intensivist and a diabetologist who will provide screening and targeted interventions. Six months after discharge, all patients will be assessed by blinded assessors for glycated haemoglobin, peripheral neuropathy, cardiovascular autonomic neuropathy, nephropathy, quality of life, frailty, employment and healthcare utilisation. The primary outcome of this study will be the recruitment and retention at 6 months of all eligible patients. Discussion: This study will provide preliminary data about the potential effects of critical illness on chronic glucose metabolism, the prevalence of microvascular complications, and the impact on healthcare utilisation and quality of life in intensive care survivors with type 2 diabetes. If feasibility is established and point estimates are indicative of benefit, funding will be sought for a larger, multi-centre study. Trial registration: ANZCTR ACTRN12616000206426Yasmine Ali Abdelhamid, Liza Phillips, Michael Horowitz and Adam Dean

    Heterologous Amyloid Seeding: Revisiting the Role of Acetylcholinesterase in Alzheimer's Disease

    Get PDF
    Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-β peptide (Aβ) production via β and γ secretases in Alzheimer's Disease (AD), is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Aβ in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE) and neprilysin (NEP). The known association of human acetylcholinesterase (hAChE) with pathological aggregates in AD together with its ability to increase Aβ fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE575-614) is an exposed amphiphilic α-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR) with high propensity for conversion to non-native (hidden) β-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE586-599) encompassing the CSR region shares homology with Aβ and forms β-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE β-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE586-599, or versus Aβ, differed. Moreover, IDE digestion of T40 triggered the conformational switch from α- to β-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers). Crucially, these CSR species significantly increased Aβ fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation for observations that implicate hAChE in the extent of Aβ deposition in the brain. Furthermore, this process of heterologous amyloid seeding by a proteolytic fragment from another protein may represent a previously underestimated pathological trigger, implying that the abundance of the major amyloidogenic species (Aβ in AD, for example) may not be the only important factor in neurodegeneration
    • …
    corecore