960 research outputs found

    Long-lived protoplanetary disks in multiple systems: the VLA view of HD 98800

    Full text link
    The conditions and evolution of protoplanetary disks in multiple systems can be considerably different from those around single stars, which may have important consequences for planet formation. We present Very Large Array (VLA) 8.8 mm (34 GHz) and 5 cm (6 GHz) observations of the quadruple system HD 98800, which consists of two spectroscopic binary systems (Aa-Ab, Ba-Bb). The Ba-Bb pair is surrounded by a circumbinary disk, usually assumed to be a debris disk given its ∌\sim10 Myr age and lack of near infrared excess. The VLA 8.8 mm observations resolve the disk size (5-5.5 au) and its inner cavity (≈\approx3 au) for the first time, making it one of the smallest disks known. Its small size, large fractional luminosity, and millimeter spectral index consistent with blackbody emission support the idea that HD 98800 B is a massive, optically thick ring which may still retain significant amounts of gas. The disk detection at 5 cm is compatible with free-free emission from photoionized material. The diskless HD 98800 A component is also detected, showing partial polarization at 5 cm compatible with non-thermal chromospheric activity. We propose that tidal torques from Ba-Bb and A-B have stopped the viscous evolution of the inner and outer disk radii, and the disk is evolving via mass loss through photoevaporative winds. This scenario can explain the properties and longevity of HD 98800 B as well as the lack of a disk around HD 98800 A, suggesting that planet formation could have more time to proceed in multiple systems than around single stars in certain system configurations.Comment: 14 pages, 4 figures, 3 tables; Submitted to ApJ May 14 2018; Accepted to ApJ August 3 2018. This version fixes a mistake in the reported position angle. The order of the figures has been changed to match that of the references in the tex

    Binaries in star clusters and the origin of the field stellar population

    Get PDF
    Many, possibly most, stars form in binary and higher-order multiple systems. Therefore, the properties and frequency of binary systems provide strong clues to the star-formation process, and constraints on star-formation models. However, the majority of stars also form in star clusters in which the birth binary properties and frequency can be altered rapidly by dynamical processing. Thus, we almost never see the birth population, which makes it very difficult to know if star formation (as traced by binaries, at least) is universal, or if it depends on environment. In addition, the field population consists of a mixture of systems from different clusters which have all been processed in different ways.Comment: 16 pages, no figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 8 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil

    Discovery of the Fomalhaut C debris disc

    Get PDF
    Fomalhaut is one of the most interesting and well studied nearby stars, hosting at least one planet, a spectacular debris ring, and two distant low-mass stellar companions (TW PsA and LP 876-10, a.k.a. Fomalhaut B & C). We observed both companions with Herschel, and while no disc was detected around the secondary, TW PsA, we have discovered the second debris disc in the Fomalhaut system, around LP 876-10. This detection is only the second case of two debris discs seen in a multiple system, both of which are relatively wide (≳\gtrsim3000 AU for HD 223352/40 and 158 kAU [0.77 pc] for Fomalhaut/LP 876-10). The disc is cool (24K) and relatively bright, with a fractional luminosity Ldisc/L⋆=1.2×10−4L_{\rm disc}/L_\star = 1.2 \times 10^{-4}, and represents the rare observation of a debris disc around an M dwarf. Further work should attempt to find if the presence of two discs in the Fomalhaut system is coincidental, perhaps simply due to the relatively young system age of 440 Myr, or if the stellar components have dynamically interacted and the system is even more complex than it currently appears.Comment: Published in MNRAS Letters. Merry Xma

    The formation and evolution of binary systems. III. Low-mass binaries in the Praesepe cluster

    Full text link
    With the aim of investigating the binary population of the 700 Myr old Praesepe cluster, we have observed 149 G and K-type cluster members using adaptive optics. We detected 26 binary systems with an angular separation ranging from less than 0.08 to 3.3 arcsec (15-600 AU). After correcting for detection biases, we derive a binary frequency (BF) in the logP (days) range from 4.4 to 6.9 of 25.3 +/- 5.4%, which is similar to that of field G-type dwarfs (23.8%, Duquennoy & Mayor 1991). This result, complemented by similar ones obtained for the 2 Myr old star forming cluster IC 348 (Paper II) and the 120 Myr old Pleiades open cluster (Paper I), indicates that the fraction of long-period binaries does not significantly evolve over the lifetime of galactic open clusters. We compare the distribution of cluster binaries to the binary populations of star forming regions, most notably Orion and Taurus, to critically review current ideas regarding the binary formation process. We conclude that it is still unclear whether the lower binary fraction observed in young clusters compared to T associations is purely the result of the early dynamical disruption of primordial binaries in dense clusters or whether it reflects intrinsically different modes of star formation in clusters and associations. We also note that if Taurus binaries result from the dynamical decay of small-N protostellar aggregates, one would predict the existence of a yet to be found dispersed population of mostly single substellar objects in the Taurus cloud.Comment: 10 pages, 3 figure

    The EU and Asia within an evolving global order: what is Europe? Where is Asia?

    Get PDF
    The papers in this special edition are a very small selection from those presented at the EU-NESCA (Network of European Studies Centres in Asia) conference on "the EU and East Asia within an Evolving Global Order: Ideas, Actors and Processes" in November 2008 in Brussels. The conference was the culmination of three years of research activity involving workshops and conferences bringing together scholars from both regions primarily to discuss relations between Europe and Asia, perceptions of Europe in Asia, and the relationship between the European regional project and emerging regional forms in Asia. But although this was the last of the three major conferences organised by the consortium, it in many ways represented a starting point rather than the end; an opportunity to reflect on the conclusions of the first phase of collaboration and point towards new and continuing research agendas for the future

    Linear polarization sensitivity of SeGA detectors

    Get PDF
    Parity is a key observable in nuclear spectroscopy. Linear polarization measurements of Îł\gamma-rays are a probe to access the parities of energy levels. Utilizing the segmentation of detectors in the Segmented Germanium Array (SeGA) at the NSCL and analyzing the positions of interaction therein allows the detectors to be used as Compton polarimeters. Unlike other segmented detectors, SeGA detectors are irradiated from the side to utilize the transversal segmentation for better Doppler corrections. Sensitivity in such an orientation has previously been untested. A linear polarization sensitivity Q≈0.14Q \approx 0.14 has been measured in the 350-keV energy range for SeGA detectors using α\alpha-Îł\gamma correlations from a \nuc{249}{Cf} source.Comment: 7 pages, 9 figure

    Measuring the Mass of a Pre-Main Sequence Binary Star Through the Orbit of TWA 5A

    Get PDF
    We present the results of a five year monitoring campaign of the close binary TWA 5Aab in the TW Hydrae association, using speckle and adaptive optics on the W.M. Keck 10 m telescopes. These measurements were taken as part of our ongoing monitoring of pre-main sequence (PMS) binaries in an effort to increase the number of dynamically determined PMS masses and thereby calibrate the theoretical PMS evolutionary tracks. Our observations have allowed us to obtain the first determination of this system's astrometric orbit. We find an orbital period of 5.94 +- 0.09 years and a semi-major axis of 0.066" +- 0.005". Combining these results with a kinematic distance, we calculate a total mass of 0.71 +- 0.14 M_sun (D/44 pc)^3. for this system. This mass measurement, as well as the estimated age of this system, are consistent to within 2σ\sigma of all theoretical models considered. In this analysis, we properly account for correlated uncertainties, and show that while these correlations are generally ignored, they increase the formal uncertainties by up to a factor of five and therefore are important to incorporate. With only a few more years of observation, this type of measurement will allow the theoretical models to be distinguished

    Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory

    Get PDF
    Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us to comprehend the architecture of extrasolar planetary systems. Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have provided a valuable dataset for the study of debris discs gas and dust composition. This paper is part of a series of papers devoted to the study of Herschel PACS observations of young stellar associations. Aims. This work aims at studying the properties of discs in the Beta Pictoris Moving Group (BPMG) through far-IR PACS observations of dust and gas. Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100 and 160 microns of 19 BPMG members, together with spectroscopic observations of four of them. Spectroscopic observations were centred at 63.18 microns and 157 microns, aiming to detect [OI] and [CII] emission. We incorporated the new far-IR observations in the SED of BPMG members and fitted modified blackbody models to better characterise the dust content. Results. We have detected far-IR excess emission toward nine BPMG members, including the first detection of an IR excess toward HD 29391.The star HD 172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding the short list of debris discs with a gas detection. No debris disc in BPMG is detected in both [OI] and [CII]. The discs show dust temperatures in the range 55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii from blackbody models in the range 3 to 82 AU. All the objects with a gas detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table

    Molecular excitation in the Eagle nebula's fingers

    Get PDF
    Context: The M16 nebula is a relatively nearby Hii region, powered by O stars from the open cluster NGC 6611, which borders to a Giant Molecular Cloud. Radiation from these hot stars has sculpted columns of dense obscuring material on a few arcmin scales. The interface between these pillars and the hot ionised medium provides a textbook example of a Photodissociation Region (PDR). Aims: To constrain the physical conditions of the atomic and molecular material with submillimeter spectroscopic observations. Methods: We used the APEX submillimeter telescope to map a ~3'x3' region in the CO J=3-2, 4-3 and 7-6 rotational lines, and a subregion in atomic carbon lines. We also observed C18O(3-2) and CO(7-6) with longer integrations on five peaks found in the CO(3-2) map. The large scale structure of the pillars is derived from the molecular lines' emission distribution. We estimate the magnitude of the velocity gradient at the tips of the pillars and use LVG modelling to constrain their densities and temperatures. Excitation temperatures and carbon column densities are derived from the atomic carbon lines. Results: The atomic carbon lines are optically thin and excitation temperatures are of order 60 K to 100 K, well consistent with observations of other Hii region-molecular cloud interfaces. We derive somewhat lower temperatures from the CO line ratios, of order 40 K. The Ci/CO ratio is around 0.1 at the fingers tips.Comment: 4 pages, APEX A&A special issue, accepte
    • 

    corecore