18 research outputs found
The 9-1-1 checkpoint clamp stimulates DNA resection by Dna2-Sgs1 and Exo1
Single-stranded DNA (ssDNA) at DNA ends is an important regulator of the DNA damage response. Resection, the generation of ssDNA, affects DNA damage checkpoint activation, DNA repair pathway choice, ssDNA-associated mutation and replication fork stability. In eukaryotes, extensive DNA resection requires the nuclease Exo1 and nuclease/helicase pair: Dna2 and Sgs1^(BLM). How Exo1 and Dna2-Sgs1^(BLM) coordinate during resection remains poorly understood. The DNA damage checkpoint clamp (the 9-1-1 complex) has been reported to play an important role in stimulating resection but the exact mechanism remains unclear. Here we show that the human 9-1-1 complex enhances the cleavage of DNA by both DNA2 and EXO1 in vitro, showing that the resection-stimulatory role of the 9-1-1 complex is direct. We also show that in Saccharomyces cerevisiae, the 9-1-1 complex promotes both Dna2-Sgs1 and Exo1-dependent resection in response to uncapped telomeres. Our results suggest that the 9-1-1 complex facilitates resection by recruiting both Dna2-Sgs1 and Exo1 to sites of resection. This activity of the 9-1-1 complex in supporting resection is strongly inhibited by the checkpoint adaptor Rad9^(53BP1). Our results provide important mechanistic insights into how DNA resection is regulated by checkpoint proteins and have implications for genome stability in eukaryotes
Tip1/CLIP-170 Protein Is Required for Correct Chromosome Poleward Movement in Fission Yeast
The plus-end microtubule binding proteins (+TIPs) play an important role in the regulation of microtubule stability and cell polarity during interphase. In S. pombe, the CLIP-170 like protein Tip1, together with the kinesin Tea2, moves along the microtubules towards their plus ends. Tip1 also requires the EB1 homolog Mal3 to localize to the microtubule tips. Given the requirement for Tip1 for microtubule stability, we have investigated its role during spindle morphogenesis and chromosome movement. Loss of Tip1 affects metaphase plate formation and leads to the activation of the spindle assembly checkpoint. In the absence of Tip1 we also observed the appearance of lagging chromosomes, which do not influence the normal rate of spindle elongation. Our results suggest that S. pombe Tip1/CLIP170 is directly or indirectly required for correct chromosome poleward movement independently of Mal3/EB1
Characterization of a new pathway of gene silencing establishment in Saccharomyces cerevisiae
Chez la levure Ă bourgeon, lâĂ©tablissement de domaines silencieux pour la transcription nĂ©cessite la formation dâune structure, de type hĂ©tĂ©rochromatine, formĂ©e par le complexe SIR (Silencing Information Regulator). Les gĂšnes soumis Ă la rĂ©pression transcriptionnelle par ce complexe se trouvent aux sites cryptiques de dĂ©termination du type sexuel (HM) et dans les rĂ©gions subtĂ©lomĂ©riques localisĂ©es Ă la pĂ©riphĂ©rie nuclĂ©aire. Le recrutement des protĂ©ines Sir Ă ces sites nĂ©cessite la prĂ©sence de sĂ©quences en cis comme les silencers ou les rĂ©pĂ©titions tĂ©lomĂ©riques. Mon travail de thĂšse sâest attachĂ© Ă lâĂ©tude dâune nouvelle voie dâĂ©tablissement de la rĂ©pression transcriptionnelle des gĂšnes. En effet, nous avons dĂ©montrĂ© que la rĂ©pĂ©tition en tandem de protĂ©ines fortement liĂ©es Ă lâADN constitue un stress pour la fibre de chromatine. Ce stress induit le recrutement du complexe SIR favorisant ainsi la formation dâhĂ©tĂ©rochromatine et la mise en silence des gĂšnes dans des rĂ©gions normalement actives du gĂ©nome. De plus, nous avons observĂ© quâen absence de lâADN hĂ©licase Rrm3, dont la fonction est de faciliter la progression de la fourche de rĂ©plication le long de la fibre de chromatine, la rĂ©pression induite par ces complexes est exacerbĂ©e. Ce lien entre stress rĂ©plicatif et Ă©tablissement de la rĂ©pression transcriptionnelle a Ă©tĂ© observĂ©, dans un premier temps, grĂące Ă lâutilisation de systĂšmes artificiels (systĂšmes dâĂ©tiquetage des gĂšnes : lacO/LacI et tetO/TetR). En outre, nous avons montrĂ© quâun site naturel de pause de la rĂ©plication, tel quâun gĂšne codant un ARN de transfert, peut Ă©galement favoriser la rĂ©pression par les protĂ©ines Sir. De maniĂšre intĂ©ressante, Ă lâĂ©chelle du gĂ©nome, nous avons pu observer le recrutement des protĂ©ines Sir dans des rĂ©gions oĂč la progression de la fourche de rĂ©plication est ralentie. Ainsi, nos donnĂ©es rĂ©vĂšlent une nouvelle voie de mise en silence des gĂšnes liant stress rĂ©plicatif et rĂ©pression transcriptionnelle.In budding yeast, the heterochromatin-like structure formed by the SIR complex (Silencing Information Complex) represses transcription. SIR mediated repression occurs at the cryptic mating type loci (HM) and subtelomeric regions localized at the nuclear periphery. The recruitment of the Sir proteins is induced by the presence of cis-acting elements as silencers or telomeric repeats.My doctorate work was focused on the characterization of a novel pathway of silencing establishment. Indeed, we have shown that arrays of tight DNA-proteins complexes lead to a chromatin stress. This stress induces the recruitment of the SIR complex and the establishment of stable heterochromatin-like domain at ectopic sites in the budding yeast genome. Moreover, this heterochromatinization is enhanced in cells mutated for Rrm3, a specialized DNA helicase acting ahead the fork to remove replication-impeding structures. Thus, we first observed a link between replication stress and silencing establishment by using artificial systems (gene tagging systems: lacO/LacI and tetO/TetR). Further, we have shown that tRNA genes, which are known to act as replication pause sites, can favor SIR-mediated repression. Interestingly, we found that Sir proteins are recruited where the replication fork progression is impeded at the genome wide scale. All together, these data reveal a novel mechanism for heterochromatin formation linking replication stress with gene repression
Etude d'une nouvelle voie de mise en silence des gĂšnes chez la levure saccharomyces cerevisiae.
Chez la levure Ă bourgeon, l Ă©tablissement de domaines silencieux pour la transcription nĂ©cessite la formation d une structure, de type hĂ©tĂ©rochromatine, formĂ©e par le complexe SIR (Silencing Information Regulator). Les gĂšnes soumis Ă la rĂ©pression transcriptionnelle par ce complexe se trouvent aux sites cryptiques de dĂ©termination du type sexuel (HM) et dans les rĂ©gions subtĂ©lomĂ©riques localisĂ©es Ă la pĂ©riphĂ©rie nuclĂ©aire. Le recrutement des protĂ©ines Sir Ă ces sites nĂ©cessite la prĂ©sence de sĂ©quences en cis comme les silencers ou les rĂ©pĂ©titions tĂ©lomĂ©riques. Mon travail de thĂšse s est attachĂ© Ă l Ă©tude d une nouvelle voie d Ă©tablissement de la rĂ©pression transcriptionnelle des gĂšnes. En effet, nous avons dĂ©montrĂ© que la rĂ©pĂ©tition en tandem de protĂ©ines fortement liĂ©es Ă l ADN constitue un stress pour la fibre de chromatine. Ce stress induit le recrutement du complexe SIR favorisant ainsi la formation d hĂ©tĂ©rochromatine et la mise en silence des gĂšnes dans des rĂ©gions normalement actives du gĂ©nome. De plus, nous avons observĂ© qu en absence de l ADN hĂ©licase Rrm3, dont la fonction est de faciliter la progression de la fourche de rĂ©plication le long de la fibre de chromatine, la rĂ©pression induite par ces complexes est exacerbĂ©e. Ce lien entre stress rĂ©plicatif et Ă©tablissement de la rĂ©pression transcriptionnelle a Ă©tĂ© observĂ©, dans un premier temps, grĂące Ă l utilisation de systĂšmes artificiels (systĂšmes d Ă©tiquetage des gĂšnes : lacO/LacI et tetO/TetR). En outre, nous avons montrĂ© qu un site naturel de pause de la rĂ©plication, tel qu un gĂšne codant un ARN de transfert, peut Ă©galement favoriser la rĂ©pression par les protĂ©ines Sir. De maniĂšre intĂ©ressante, Ă l Ă©chelle du gĂ©nome, nous avons pu observer le recrutement des protĂ©ines Sir dans des rĂ©gions oĂč la progression de la fourche de rĂ©plication est ralentie. Ainsi, nos donnĂ©es rĂ©vĂšlent une nouvelle voie de mise en silence des gĂšnes liant stress rĂ©plicatif et rĂ©pression transcriptionnelle.In budding yeast, the heterochromatin-like structure formed by the SIR complex (Silencing Information Complex) represses transcription. SIR mediated repression occurs at the cryptic mating type loci (HM) and subtelomeric regions localized at the nuclear periphery. The recruitment of the Sir proteins is induced by the presence of cis-acting elements as silencers or telomeric repeats.My doctorate work was focused on the characterization of a novel pathway of silencing establishment. Indeed, we have shown that arrays of tight DNA-proteins complexes lead to a chromatin stress. This stress induces the recruitment of the SIR complex and the establishment of stable heterochromatin-like domain at ectopic sites in the budding yeast genome. Moreover, this heterochromatinization is enhanced in cells mutated for Rrm3, a specialized DNA helicase acting ahead the fork to remove replication-impeding structures. Thus, we first observed a link between replication stress and silencing establishment by using artificial systems (gene tagging systems: lacO/LacI and tetO/TetR). Further, we have shown that tRNA genes, which are known to act as replication pause sites, can favor SIR-mediated repression. Interestingly, we found that Sir proteins are recruited where the replication fork progression is impeded at the genome wide scale. All together, these data reveal a novel mechanism for heterochromatin formation linking replication stress with gene repression.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF
NPCs and APBs: two HUBs of non-canonical homology-based recombination at telomeres?
International audienceApart from a few rare exceptions, the maintenance of functional telomeres by recombinationbased mechanisms is restricted to accidental and/or pathological situations. Originally described in the yeast S. cerevisiae, this mode of telomere repair has gained interest with the discovery of telomerase negative cancers that use alternative lengthening of telomeres (ALT cancer) dependent on homologous recombination. In both yeast and humans, it has been shown that recombination at telomeres is spatially regulated and occurs preferentially at the nuclear pore complexes (NPCs) in yeast and at ALT-associated promyelocytic leukemia nuclear bodies (APBs) in human cells. Here, we discuss the potential relationships between these two membrane-less structures and their role in enabling unconventional recombination pathways
Telomeric circles localize to the Nuclear Pore Complex and participate to telomere recombination in the absence of telomerase
International audienc
Telomeric Câcircles localize at nuclear pore complexes in Saccharomyces cerevisiae
International audienc
The Set1 N-terminal domain and Swd2 interact with RNA polymerase II CTD to recruit COMPASS
International audienceMethylation of histone H3 lysine 4 (H3K4) by Set1/COMPASS occurs co-transcriptionally, and is important for gene regulation. Set1/COMPASS associates with the RNA polymerase II C-terminal domain (CTD) to establish proper levels and distribution of H3K4 methylations. However, details of CTD association remain unclear. Here we report that the Set1 N-terminal region and the COMPASS subunit Swd2, which interact with each other, are both needed for efficient CTD binding in Saccharomyces cerevisiae. Moreover, a single point mutation in Swd2 that affects its interaction with Set1 also impairs COMPASS recruitment to chromatin and H3K4 methylation. A CTD interaction domain (CID) from the protein Nrd1 can partially substitute for the Set1 N-terminal region to restore CTD interactions and histone methylation. However, even when Set1/COMPASS is recruited via the Nrd1 CID, histone H2B ubiquitylation is still required for efficient H3K4 methylation, indicating that H2Bub acts after the initial recruitment of COMPASS to chromatin
Transcriptome profiling of mouse samples using nanopore sequencing of cDNA and RNA molecules
International audienc