9,584 research outputs found

    The contribution of O(alpha) radiative corrections to the renormalised anisotropy and application to general tadpole improvement schemes: addendum to "One loop calculation of the renormalised anisotropy for improved anisotropic gluon actions on a lattice" [hep-lat/0208010]

    Full text link
    General O(alpha) radiative corrections to lattice actions may be interpreted as counterterms that give additive contributions to the one-loop renormalisation of the anisotropy. The effect of changing the radiative coefficients is thus easily calculable. In particular, the results obtained in a previous paper for Landau mean link improved actions apply in any tadpole improvement scheme. We explain how this method can be exploited when tuning radiatively improved actions. Efficient methods for self-consistently tuning tadpole improvement factors are also discussed.Comment: 3 pages of revte

    Many-body quantum dynamics of polarisation squeezing in optical fibre

    Get PDF
    We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fibre, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibres. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.Comment: 4 pages, 4 figure

    Estimating Parasitism of Colorado Potato Beetle Eggs, \u3ci\u3eLeptinotarsa Decemlineata\u3c/i\u3e (Coleoptera: Chrysomelidae), by \u3ci\u3eEdovum Puttleri\u3c/i\u3e (Hymenoptera: Eulophidae)

    Get PDF
    A computer simulation was used to evaluate methods for estimating parasitism of Colorado potato beetle egg mass populations by Edovum puttleri. The algorithm incorporated the specific attack behavior of E. puttleri, and a development time for parasitized egg masses of ca. 2.9 times that of healthy egg masses. Of the methods compared, a modification of Southwood\u27s graphical technique was found to be most accurate in relation to the true parasitism derived from the algorithm. A regression equation is presented to correct the error in this method at high levels of parasitism. A second simulation was used to test the accuracy of this correcter where in a jacknife procedure was used to generate a mean and variance for estimates of parasitism

    Circuit Synthesis of Electrochemical Supercapacitor Models

    Full text link
    This paper is concerned with the synthesis of RC electrical circuits from physics-based supercapacitor models describing conservation and diffusion relationships. The proposed synthesis procedure uses model discretisation, linearisation, balanced model order reduction and passive network synthesis to form the circuits. Circuits with different topologies are synthesized from several physical models. This work will give greater understanding to the physical interpretation of electrical circuits and will enable the development of more generalised circuits, since the synthesized impedance functions are generated by considering the physics, not from experimental fitting which may ignore certain dynamics

    On All-loop Integrands of Scattering Amplitudes in Planar N=4 SYM

    Get PDF
    We study the relationship between the momentum twistor MHV vertex expansion of planar amplitudes in N=4 super-Yang-Mills and the all-loop generalization of the BCFW recursion relations. We demonstrate explicitly in several examples that the MHV vertex expressions for tree-level amplitudes and loop integrands satisfy the recursion relations. Furthermore, we introduce a rewriting of the MHV expansion in terms of sums over non-crossing partitions and show that this cyclically invariant formula satisfies the recursion relations for all numbers of legs and all loop orders.Comment: 34 pages, 17 figures; v2: Minor improvements to exposition and discussion, updated references, typos fixe

    The Yangian origin of the Grassmannian integral

    Get PDF
    In this paper we analyse formulas which reproduce different contributions to scattering amplitudes in N=4 super Yang-Mills theory through a Grassmannian integral. Recently their Yangian invariance has been proved directly by using the explicit expression of the Yangian level-one generators. The specific cyclic structure of the form integrated over the Grassmannian enters in a crucial way in demonstrating the symmetry. Here we show that the Yangian symmetry fixes this structure uniquely.Comment: 26 pages. v2: typos corrected, published versio

    On the Classification of Residues of the Grassmannian

    Get PDF
    We study leading singularities of scattering amplitudes which are obtained as residues of an integral over a Grassmannian manifold. We recursively do the transformation from twistors to momentum twistors and obtain an iterative formula for Yangian invariants that involves a succession of dualized twistor variables. This turns out to be useful in addressing the problem of classifying the residues of the Grassmannian. The iterative formula leads naturally to new coordinates on the Grassmannian in terms of which both composite and non-composite residues appear on an equal footing. We write down residue theorems in these new variables and classify the independent residues for some simple examples. These variables also explicitly exhibit the distinct solutions one expects to find for a given set of vanishing minors from Schubert calculus.Comment: 20 page

    Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes

    Get PDF
    We demonstrate that the tree-level amplitudes of maximal super-Yang-Mills theory in six dimensions, when stripped of their overall momentum and supermomentum delta functions, are covariant with respect to the six-dimensional dual conformal group. Using the generalized unitarity method, we demonstrate that this property is also present for loop amplitudes. Since the six-dimensional amplitudes can be interpreted as massive four-dimensional ones, this implies that the six-dimensional symmetry is also present in the massively regulated four-dimensional maximal super-Yang-Mills amplitudes.Comment: 20 pages, 3 figures, minor clarification, references update

    Electron Emission from Diamondoids: A Diffusion Quantum Monte Carlo Study

    Get PDF
    We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the trends of well-converged plane-wave DFT calculations for the size dependence of the optical gap, but they predict gaps that are 1-2 eV higher. They confirm that quantum confinement effects disappear in diamondoids larger than 1 nm, which have gaps below that of bulk diamond. Our QMC calculations predict a small exciton binding energy and a negative electron affinity (NEA) for diamondoids up to 1 nm, resulting from the delocalized nature of the lowest unoccupied molecular orbital. The NEA suggests a range of possible applications of diamondoids as low-voltage electron emitters
    • …
    corecore