We study leading singularities of scattering amplitudes which are obtained as
residues of an integral over a Grassmannian manifold. We recursively do the
transformation from twistors to momentum twistors and obtain an iterative
formula for Yangian invariants that involves a succession of dualized twistor
variables. This turns out to be useful in addressing the problem of classifying
the residues of the Grassmannian. The iterative formula leads naturally to new
coordinates on the Grassmannian in terms of which both composite and
non-composite residues appear on an equal footing. We write down residue
theorems in these new variables and classify the independent residues for some
simple examples. These variables also explicitly exhibit the distinct solutions
one expects to find for a given set of vanishing minors from Schubert calculus.Comment: 20 page