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1 Introduction

A major breakthrough in the study of scattering amplitudes of N = 4 SYM was the

conjecture made in [1], that leading singularities of the NkMHV amplitudes involving n

particles can be obtained as residues of the following integral:

Ln,k+2(λ, λ̃, η̃) =
1

Vol(GL(k + 2))

∫

d(k+2)×nCαa

C(12 . . . k + 2) . . . C(n1 . . . k + 1)

×
k+2
∏

α=1

δ2(Cαaλ̃a)δ
4(Cαaη̃a)

n−k−2
∏

β=1

δ2(C̃βaλa) . (1.1)

Here (λa, λ̃a), with a ∈ {1, . . . .n} label the null external momenta of the scattering particles

and, geometrically, they specify two distinct 2-planes in C
n. The η̃i are Grassmann variables

which keep track of the helicity of the scattering particles. The delta functions in (1.1)

constrain the 2-plane λ̃ to be orthogonal to a k + 2-plane described by the matrix C , and

λ to be orthogonal to the complementary n−k−2-plane, denoted by C̃. This ensures that
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λ and λ̃ are orthogonal planes, which is equivalent to demanding momentum conservation.

The measure of the integral is the product of n factors C(i, i+1, . . . , i+k+2), each a minor

computed from (k + 2) consecutive columns, and it ensures that the integral is invariant

under a GL(k + 2) transformation on C. Therefore the integral in (1.1) is defined over the

space of k + 2-planes in C
n , which is the Grassmannian G(n, k + 2) [1].

The Grassmannian integral in (1.1) was first presented in twistor space variables [2–5]

as a way to encode the properties of scattering amplitudes and the BCFW recursion rela-

tions in twistor space [6]–[20]. Moreover, it was also shown that it reflects the integrable

structure of N = 4 SYM and possesses all the expected symmetries [1, 21, 22]. As is well

known, the planar limit of the N = 4 theory has a Yangian symmetry [23, 24]. The Yangian

has a set of generators that correspond to the usual superconformal generators and another

set that generates a dual superconformal symmetry [25]–[38]. These are, respectively, the

level zero and level one generators of the Yangian algebra (in one presentation). The Grass-

mannian integral has been shown to be invariant under this full Yangian symmetry [39].

Furthermore, it is argued in [40, 41] that all the Yangian invariants can be generated as

contour integrals in G(k, n).

The superconformal invariance of the leading singularities is best seen by writing them

out in twistor space, which is done by Fourier transforming with respect to the λ variable

in (1.1), resulting in [1]:

Ln,k+2(W) =
1

Vol(GL(k + 2))
×

∫

d(k+2)×nCαa

C(12 . . . k + 2) . . . C(n1 . . . k + 1)

k+2
∏

α=1

δ4|4(CαaWa) ,

(1.2)

where Wa = (µ̃a, λ̃a|η̃a) ∈ CP
3|4, which is super-twistor space. On the other hand, the dual

superconformal symmetry is best seen by changing variables in (1.1) to what are called

momentum twistors [42], which we denote by Z :

Ln,k+2(λ, λ̃) = Atree
MHV Rn,k(Z) . (1.3)

Unlike the transformation between the twistor variables W and the momenta –which is a

Fourier transformation– the relation between the momentum twistors and momenta is a

purely algebraic one. The factor Rn,k(Z) is a Yangian invariant [43] and will be the focus

of our analysis in later sections.

One interesting aspect of these manipulations is the self-similar nature of the transfor-

mations. Rn,k(Z) is written as

Rn,k(Z) =
1

Vol(GL(k))
×

∫

dk×nDαa

D(12 . . . k) . . . D(n1 . . . k)

k
∏

α=1

δ4|4(DαaZa) , (1.4)

which has the same form as Ln,k+2(W) in twistor space, but with k reduced by two. We

will use Yn,k(Z) to denote the integral (1.4) in later sections, where the contour does

not necessarily pick out a leading singularity. A natural question to ask is whether it

is possible to iterate this procedure, thereby systematically reducing the value of k, and

define a sequence of dualized twistor variables in the process. This is what we will do in
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the later sections, with some modifications with respect to the original method, resulting

in an iterative formula for the Yangian invariants. The formula turns out to be a useful

bookkeeping device for the classification of residues.

Leading singularities have been conjectured to be sufficient data to reconstruct the

perturbative S-matrix of N = 4 SYM [44, 45] and this has been checked for all one-loop

amplitudes and for some examples at higher loops1 [47]–[55]. Since it has been shown that

all leading singularities can be obtained as residues of the Grassmannian integral (1.1), we

have a physical motivation to obtain a complete classification of these residues.

Another motivation for the classification arises as follows: in [56] it was shown that

for a given n and k, there are only certain primitive configurations in twistor space where

any leading singularity can be supported. The simplest leading singularities with such a

support are called primitive. This means that for a given n and k, and to all orders in

perturbation theory, there is only a finite number of different algebraic functions that a

leading singularity can be. As we mentioned earlier, leading singularities have been shown

to be invariant under the Yangian symmetry [43]. Moreover, it was shown that all Yangian

invariants are residues of the Grassmannian. In this spirit, if it were possible to count

residues and primitive singularities independently, given that the two sets for a given n

and k are finite, one could prove their complete equivalence.

Let us now discuss in some detail how to define residues of the integral in (1.1). The

description of the Grassmannian through the matrix C contains a GL(k + 2) redundancy

(or gauge symmetry), that can be eliminated by imposing (k + 2)2 conditions on the Cαa’s

(fixing the gauge). We also have 2n explicit delta-functions, but we know that four of

these must encode momentum conservation. Therefore, there are only 2n − 4 effective

delta functions that constrain the elements Cαa . Taking all this into account, we see that

the integral in (1.1) localizes onto a submanifold of dimension

d ≡ n(k + 2) − (k + 2)2 − (2n − 4) = k(n − k − 4) . (1.5)

This means that every residue of (1.1) corresponds to a different way of imposing d con-

ditions on the minors of C. Here the following technical difficulty arises. For generic k ,

the number of conditions to be imposed exceeds the number n of factors that appear ex-

plicitly in the denominator. Therefore it must be that on the locus where a given minor

vanishes, another minor further factorizes, and so on. This phenomenon gives rise to what

are called composite residues and a complete classification of these residues has so far not

been carried out although there has been much progress along this direction [56–59].

We will show that, using the iterative technique mentioned above, it is possible to

define new coordinates on the Grassmannian, simply defined in terms of the minors, in

terms of which both composite and non-composite residues appear on an equal footing. In

this work we focus on small values of n where we are able to explicitly count the number

of independent residues of the Grassmannian for k = 2. All other residues can be obtained

from this given set by using simple residue theorems in the new variables.

The new variables also carry some unexpected bonuses. In [1] it was shown that

the number of solutions one expects by setting the d minors to zero is related to the

1See [46] for a recent review on loop amplitudes.
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calculation of a certain Littlewood-Richardson coefficient, which followed from calculating

the self-intersection of a Schubert cycle, and this was checked for small values of k and n.

We show that in terms of the new variables it is possible to exhibit these different solutions

explicitly, at least for all values of n ≤ 12 (when the number of consecutive minors is

greater than or equal to d).

This paper is organized as follows. In section 2, we derive our main formula, that

iteratively relates the leading singularities for a given n and k to one with smaller k. The

analysis parallels closely the transformation from twistor variables to momentum twistors.

From then on, we will restrict our attention to the case k = 2. In section 3, we find a

general map (for all n) that relates vanishing minors in the original variables to specific

configurations of the new ones. We will apply this map in sections 4 and 5 to map out

the set of independent residues for the cases 8 ≤ n ≤ 12. We conclude with a summary of

results and open questions in section 6.

2 Maximal breakdown of the NkMHV residues

2.1 Review of momentum twistors

Consider the Grasmannian integral (1.1). In the first part of this section, we will review

the analysis of [22] and recall how momentum twistors arise as a change of variables.

The key is to choose a gauge such that the first two rows of the C matrix coincide with

λ . To achieve this, we introduce k + 2 auxiliary spinor variables ρα , as follows:

Ln,k+2 =

∫

dk×nC ∆GL(k+2)

C(12 . . . k + 2) . . . C(n1 . . . k + 1)

×
k+2
∏

α=1

δ2|4(Cαaλ̃a)

∫ k+2
∏

α=1

d2ρα

n
∏

a=1

δ2(λa − Cαaρα) . (2.1)

Here the GL(k + 2) redundancy is lifted by explicitly including the ∆GL(k+2) factor, which

should be thought of as a product of (k + 2)2 delta functions that fix some components of

C and ρ . Out of these, 2(k + 2) delta functions can be used to set

ρT =

(

1 0 0 . . . 0

0 1 0 . . . 0

)

(2.2)

and as a result, C takes the form

C =

















λ1,1 λ1,2 . . . λ1,n

λ2,1 λ2,2 . . . λ2,n

C3,1 C3,2 . . . C3,n

...
...

. . .
...

Ck+2,1 Ck+2,2 . . . Ck+2,n

















. (2.3)

In order to reduce ∆GL(k+2) to ∆GL(k) , we still need to impose 2k delta functions.

This reflects the fact that the condition (2.2) leaves a residual symmetry, because we can
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still translate the k remaining rows of C in (2.3) by either λ1,a or λ2,a without changing

the minors of C. This can be taken care of by introducing

J(λ)

k+2
∏

α̂=3

δ(Cα̂aλa) , (2.4)

where J is the resulting Jacobian factor that depends only on λ. Putting all this together,

we get

Ln,k+2 = J(λ)δ4(λaλ̃a)δ
8(λaηa)

∫

dk×nCα̂a ∆GL(k)

C(12 . . . k + 2) . . . C(n1 . . . k + 1)

×
k+2
∏

α̂=3

δ2(Cα̂aλ) δ2|4(Cα̂aλ̃) . (2.5)

The next step is to change variables to some k × n matrix D such that the minors

of C have a simple expression in terms of the minors of D. This can be implemented by

inserting the identity as

1 =

∫

dk×nDα̂a

∏

α̂,a

δ(Dα̂a − Cα̂aQab) , (2.6)

where

Qab =
〈λb+1, λb〉 δa,b−1 + 〈λb−1, λb+1〉 δa,b + 〈λb, λb−1〉 δa,b+1

〈λb−1, λb〉〈λb, λb+1〉
. (2.7)

Then we change variables to λ̃a = Qabµb (and corresponding fermionic variables η̃’s), and

integrate over the elements of C to be left with an integral over the elements of D of

the form

Ln,k+2 =
Atree

n,MHV (λ, λ̃)

Vol(GL(k))

∫

dk×nDαa

D(12 . . . k) . . . D(n1 . . . k − 1)

k
∏

α=1

δ4|4(DαaZ
m
a )

= Atree

n,MHV (λ, λ̃)Rn,k(Z) . (2.8)

Here Zm
a = (λa, µa, ηa) are the momentum twistors [21, 22, 42] and one can see that the

integral is now defined over the Grassmannian G(n, k), parametrized by the k × n matrix

D. In the derivation, the Jacobian J(λ) is fixed by requiring the expression to transform

appropriately under the little group transformations. We refer the reader to [22] for details.

2.2 New variables from a 3 + 1 split

We would like to iterate the procedure that led to (2.8) from (1.1) by starting with the

expression for Rn,k(Z) and attempt to reduce the value of k. However, we will find it

more convenient at this stage to do a 3 + 1 split of the momentum-twistor Zm
a = (Z̃a, za),

where Z̃a is a 3-vector and za is a single component. We will suppress the supersymmetric

indices in what follows and reinstate them in the final answer in order to avoid cluttering

the formulae.
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As mentioned in the introduction, when we do not specify a specific contour to calculate

the leading singularity we will refer to the integral expression in (1.4) as Yn,k:

Yn,k(Z) =
1

Vol(GL(k))

∫

dk×nDαa

D(12 . . . k) . . . D(n1 . . . k − 1)

k
∏

α=1

δ3(DαaZ̃a)δ(Dαaza) (2.9)

and rewrite it as

Yn,k(Z) =
1

Vol(GL(k))
× (2.10)

×

∫

dk×nDαa

D(12 . . . k) . . . D(n1 . . . k − 1)

k
∏

α=1

δ3(DαaZ̃a)

×

∫

∏

a

dwae
iwaza

∫

dρα

n
∏

a=1

δ(wa − ραDαa) .

Note that, apart from the Fourier transform, this expression is very similar to the one

we obtained in (2.1). From now on, our manipulations will closely parallel those in the

previous section with wa playing the role of λa.

Following the earlier analysis, we would like to break the GL(k) gauge symmetry to

its GL(k − 1) subgroup in an attempt to effectively reduce the rank of the matrix D by

one unit. Out of the 2k − 1 parameters that we need to fix, k of them will be used to set

ρα to be of the form (1, 0, . . . 0) . The n delta functions
∏n

a=1 δ(wa − ραDαa) force the first

row of D to be identified with the vector wa :

D =













w1 w2 . . . wn

D2,1 D2,2 . . . D2,n

...
...

. . .
...

Dk,1 Dk,2 . . . Dk,n













. (2.11)

We still have the freedom to translate the remaining k − 1 rows of Dαa by wa . This can

be fixed by imposing that each row must be orthogonal to wa :

n
∑

a=1

Dα̂awa = 0 for α̂ = 2, . . . , k . (2.12)

This gives us the remaining k − 1 constraints we need to break GL(k) to GL(k − 1).

Denoting the corresponding Jacobian by J ′(w) , we get

Yn,k =

∫

dwae
iwazaδ3(Z̃awa)

J ′(w)

Vol(GL(k − 1))
×

×

∫

d(k−1)×nDα̂a

D(12 . . . k) . . . D(n1 . . . k − 1)

k
∏

α̂=2

δ3(Dα̂aZ̃a)δ(Dα̂awa) . (2.13)

We now have to express the k×k minors of D in terms of wa and the remaining k−1 rows

of D. In order to facilitate this we insert, as before, an identity operator as the integral
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over an auxiliary t-matrix:

1 =

∫ n
∏

b=1

k
∏

α̂=2

dtα̂bδ(tα̂b − Dα̂aQab) , (2.14)

where Qab is an n × n matrix which satisfies waQab = 0 . There are many possible choices

for Qab; we will choose

Qab =
1

w2
bwb+1

(δa,bwb+1 − δa,b+1wb) . (2.15)

With this choice, the k × k minors of Dαa are simply proportional to the (k − 1)× (k − 1)

minors of tα̂a, with a proportionality constant that is a function of w:

D(1, 2, . . . , k) = f(w) t(1, 2, . . . , k − 1) . (2.16)

Note that unlike the case discussed in [22], Qab is not symmetric in our case. However,

notice that the t’s still satisfy the (k − 1) constraints

n
∑

b=1

wbtα̂b = 0 . (2.17)

It follows that in order to completely integrate over D, we cannot simply use the n(k − 1)

delta functions that involve the variables t since there are k − 1 relations among them.

Fortunately, there are precisely k − 1 delta functions involving the Dαa that arose out

of gauge fixing the translation symmetry along wa. These two sets of delta functions

can therefore be traded off for each other and the integral over D performed, leading to

an overall Jacobian factor that depends only on the wa’s. The expression for Yn,k can

therefore be simplified to the form

Yn,k =

∫

dwae
iwazaδ3(Z̃awa)

J(w)

Vol(GL(k − 1))
×

×

∫

d(k−1)ntαa

t(1, 2, . . . k − 1) . . . t(n, 1, . . . k − 2)

k−1
∏

α=1

δ4(tαaZ
D
a ) . (2.18)

Here we have relabelled α̂ back to α and we have shifted the range so that α runs from 1

to k − 1 . We have also introduced new “dual” momentum-twistors, defined so that

ZD
a = (wa, µa) where Z̃a = Qabµb , (2.19)

in analogy with the usual momentum twistors. The overall Jacobian J(w) can be fixed

by requiring that the function Yn,k have the correct little group transformations under

Zm
a → ξa Zm

a . Reintroducing the fermionic delta functions, we obtain the final (supersym-
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metric) formula

Yn,k(Z) =

∫ n
∏

a=1

dwa

wa

eiwazaδ3|4(waZ̃a)
1

Vol(GL(k − 1))
×

×

∫

dtαa

t(1, 2, . . . k − 1) . . . t(n, 2, . . . k − 2)

k−1
∏

α=1

δ4|4(tαaZ
D
a )

=

∫ n
∏

a=1

dwa

wa

eiwazaδ3|4(waZ̃a)Yn,k−1(Z
D) . (2.20)

From this expression, it is clear that the process can be iterated until we reduce k all the

way to unity.

3 N2MHV residues

Let us look at the simplest non-trivial example, k = 2. Our general result simplifies to

Yn,2(Z) =

∫ n
∏

a=1

dwa

wa

eiwazaδ3|4(waZ̃a)

∫

1

Vol(GL(1))

n
∏

a=1

dta

ta
δ4|4(taZ

D
a ) . (3.1)

There are several comments we would like to make about this formula.

First, note that unlike the original Grassmannian integral (1.1), we now have 2n factors

in the denominator. As in (1.5), we have to impose d = 2n − 12 constraints in order

to compute a residue. However note that we cannot pick any d out of the 2n factors

and expect to find a rational function of Za = (Z̃a, za) . Most choices lead to what we

would like to call “singular residues”, which are distributions in the Z’s and therefore

impose additional constraints on the external momenta. In what follows, we will develop

a systematic procedure to identify the regular residues of (3.1).

There is, however, an important caveat. The counting that gave us the number of

conditions to be imposed in order to obtain a residue was derived from the original expres-

sion (2.9). From there, it is clear that we have k(n− k) variables and 4k delta functions; it

follows that we need to impose k(n − k − 4) conditions to localize the integral and obtain

a residue. Let us do a similar counting in the derived expression (3.1). A naive counting

gives us 2n − 1 variables and seven delta functions, which would suggest imposing 2n − 8

conditions, different from the counting we know to be correct. It is therefore unclear,

from the point of view of (3.1), why imposing 2n− 12 conditions should lead to a rational

function of the Z’s, or whether it even makes sense to talk about residue theorems in this

new formalism.

The situation is very similar to the issue of defining residues in the original twistor

variables. There too, there is a naive mismatch between the number of conditions and

integration variables.2 In both these cases, it would be desirable to have a mathematical

understanding of why such a definition leads to well-defined residues and consequently, of

residue theorems and we do not have this understanding at present. In both cases, one

2We would like to thank Freddy Cachazo for pointing this out to us.
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appeals to the formulation in momentum space (related via Fourier transform) in which

the counting is transparent.

What we will show is that it is possible to mirror the known residue theorems involving

D-minors by identifying a specific combination of w’s and t’s with a given consecutive minor

D(a, a + 1). This will guide us in writing out residue theorems in the new variables and

we will recover not only the simplest residue theorems, but also the supposedly more

complicated ones involving composite residues, in a natural manner.

The main advantage of this approach is that typically there are many configurations

of the (ta, wa) variables that correspond to the vanishing of a given set of d minors. For

8 ≤ n ≤ 12 we find that the number of solutions always agrees with the Littlewood-

Richardson coefficient that was quoted in [1]. We interpret this as evidence that the new

variables do in some sense break down each minor into its irreducible components. As

we will see later, a consequence of this fact is that the composite residues and the non-

composite ones are equally accessible in this formalism.

3.1 Vanishing minors in new variables

In this section we show how the vanishing of either of the (ta, wa) variables relates to

the vanishing of specific D-minors. Recall that in our gauge the matrix D takes the

following form:

D =

(

w1 w2 . . . wn

D21 D22 . . . D2n

)

. (3.2)

The D2a are related to the ta variables as follows:

ta =
wa+1D2,a − waD2,a+1

w2
awa+1

. (3.3)

However, only n − 1 of these are linearly independent, so we need to use n − 1 of these

equations along with the linearly independent equation

∑

a

D2awa = 0 . (3.4)

From these we can solve for the D2a and take the limit of these functions as various t’s and

w’s are set to zero. We find the following interesting cases:

• ta = 0 and wa 6= 0 : The columns a and a + 1 are proportional and D(a, a + 1) = 0 ,

with no other minor being set to zero. Conversely, it is always possible to solve

D(a, a + 1) = 0 by setting ta = 0 .

ta = 0 ↔ D(a, a + 1) = 0 (3.5)

• wa = 0: Solving the equations for the D2b, we find that this leads to D2a = 0. The

matrix D therefore takes the form

D =

(

w1 . . . wa−1 0 wa+1 . . . wn

D21 . . . D2,a−1 0 D2,a+1 . . . D2n

)

. (3.6)
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In terms of consecutive D-minors, this is equivalent to D(a− 1, a) = D(a, a+ 1) = 0.

These are two conditions, but one observes that when we set wa = 0 the variable ta

drops out of the system of equations, so we are free to impose an additional condition

on ta at no extra cost. In the analysis that will follow we will only consider contours

such that the pole wa = 0 can be picked up only on the locus where ta = 0 . We will

restate our earlier conclusion as follows:

{ta = wa = 0} ↔ D =

(

w1 w2 . . . 0 wa+1 . . . wn

D21 D22 . . . 0 D2,a+1 . . . D2n

)

↔ D(a − 1, a) = D(a, a + 1) = 0 . (3.7)

Setting more pairs of (wa, ta) just sets more columns to zero. However if two adjacent

columns are removed, wa = ta = wa+1 = ta+1 = 0, this gives a composite residue.

One way to understand this is to notice that such a configuration cannot be specified

in terms of minors involving only consecutive columns. For instance, a minimal gauge

invariant characterization of this solution could be given by the set of equations

D(a − 1, a) = D(a, a + 1) = D(a + 1, a + 2) = D(a − 1, a + 1) = 0 .

• There is one more way to obtain a composite residue:

{ta = wa = ta−1 = 0} ↔

(

w1 w2 . . . wa−1 0 wa+1 . . . wn

D21 D22 . . . xwa−1 0 xwa+1 . . . D2n

)

↔ D(a − 1, a) = D(a, a + 1) = D(a − 1, a + 1) = 0 . (3.8)

As in the case of two consecutive vanishing columns, we cannot express the constraint

exclusively in terms of minors that involve consecutive columns of D , and this is a

sign of the fact that this configuration corresponds to a composite residue.

Vanishing residues. We will not evaluate the residues explicitly. However, since our

goal is to classify the residues, it is useful to know when certain configurations lead to

vanishing residues. From explicit calculations [43], it has been shown that if it is possible

to choose a gauge in which more than n − 5 entries in a row are zero, then the residue

vanishes. This is most easily seen in the calculation of residues using momentum twistors.

There are 4k bosonic delta functions in (2.9). Let us look at these as a set of 4 delta

functions for each row of the D. Then we see that if we consider a configuration of D with

more than n − 5 zeroes in a row, it becomes impossible to solve for the delta functions

without constraining the momentum twistors. This leads to a vanishing residue.

We will now analyze in detail the n = 8 example, which is the simplest nontrivial case,

and then we will present our results for n ≤ 12. The goal is to obtain a classification of the

non-vanishing residues and of the relations between them, and to identify a minimal set of

independent residues from these relations.

4 n = 8: a case study

In order to check the results of the previous section, let us apply the rules we have found

to the case of 8 particles and count the number of non-trivial residues. d = 4 in this case

– 10 –
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and we need to set four minors to zero. Without including the composite ones, we expect

to find 140 residues: there are
(8
4

)

= 70 ways to choose four minors out of eight and for

each such choice there are two solutions [1].

4.1 Counting residues

In the (w, t) variables, the counting is rather simple for the n = 8 case. There are only

three non-trivial cases to consider:

• wa = wb = ta = tb = 0: This corresponds to
(8
2

)

= 28 residues. However, for b = a±1

these are composite residues, so 8 out of 28 residues are composite.

• wa = ta = tb = tc = 0: Before counting these residues, note that if b and c are

consecutive the residue will vanish. The reason is that we can gauge fix column b to
(

1
0

)

and then the condition tb = tb+1 = 0 will force the columns b , b + 1 and b + 2 to

be proportional, resulting in three consecutive zeroes. Considering that column a is

also set to zero, this residue must vanish, as discussed at the end of section 3.1.

Keeping this in mind, we get a total of 8×14 = 112 non-vanishing residues. Whenever

either b or c equals a− 1 the residue is composite, so there are 32 composite residues

and 80 non-composite residues of this type.

• ta = tb = tc = td = 0: Proceeding as in the previous case, it is easy to see that

whenever three or more of the t’s are consecutive the residue will vanish. This gives

38 non-trivial residues, all non-composite.

As we mentioned above, we expect two solutions for each set of four vanishing minors.

This is precisely what we see directly from the (w, t) variables, with two exceptions:

D(12) = D(34) = D(56) = D(78) = 0

and D(23) = D(45) = D(67) = D(81) = 0 . (4.1)

In these cases we see only one solution: t1 = t3 = t5 = t7 = 0 and t2 = t4 = t6 = t8 = 0

respectively. These correspond to the leading singularities of the 4-mass box diagrams

which have also been discussed in [1]. Even in our new variables, we cannot split these

pairs of residues and so these two conditions define four residues.

Accounting for the two irreducible solutions, we find a total of 20 + 80 + 38 + 2 = 140

non-composite residues, exactly what was found in [1]. In addition, we find 8 + 32 = 40

composite residues.

4.2 Global residue theorems for n = 8

The residues we counted in the earlier section are not all independent. They satisfy relations

such us

D(12)D(23)D(56)
[

D(34) + D(45) + D(67) + D(78) + D(81)
]

= 0 , (4.2)

where with a standard abuse of notation we are denoting residues by the corresponding

vanishing minors.
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It is useful to understand the relations between residues as descending from a global

residue theorem. We will follow the discussion in [1] and refer to that paper as well as the

mathematical literature [60–62] for details. Consider the M -form

ω =
h(zi)dz1 ∧ . . . ∧ dzM

f1(zi) . . . fM (zi)
. (4.3)

Let Fi = {z ∈ C
M : fi(z) = 0} be the M − 1 dimensional subspace associated with fi and

let Z be the intersection of all such hypersurfaces. Here Z is assumed to be a discrete set

of points. Then, the global residue of h with respect to the map f is defined as

Resf (h) =
∑

a∈Z

res(ω)a . (4.4)

The global residue theorem states that:

if deg(h) < deg(f1) + . . . + deg(fM ) − M then Resf (h) = 0 . (4.5)

One can check that the relation (4.2) can be derived, in the original Grassmannian

formulation, by applying the global residue theorem (4.4) to the following set of fi’s:

f1 = D(12)

f2 = D(23)

f3 = D(56)

f4 = D(34)D(45)D(67)D(78)D(81) (4.6)

Note that, in all our applications, the degree M of the form (4.3) coincides with the number

of conditions d derived in (1.5). So for n = 8 , we need M = 4 functions fi .

We can use the explicit map of section 4.1 to rewrite the terms of the relation (4.2) as

D(12) = D(23) = D(56) = D(78) = 0 ↔

{

t1 = t2 = t5 = t7 = 0

w2 = t2 = t5 = t7 = 0

D(12) = D(23) = D(56) = D(34) = 0 ↔

{

t1 = w3 = t5 = t3 = 0

w2 = t2 = t5 = t3 = 0

D(12) = D(23) = D(56) = D(34) = 0 ↔

{

t1 = t2 = t5 = t4 = 0

w2 = t2 = t5 = w5 = 0

D(12) = D(23) = D(56) = D(67) = 0 ↔

{

t1 = t2 = t5 = t6 = 0

w2 = t2 = w6 = t6 = 0

D(12) = D(23) = D(56) = D(81) = 0 ↔

{

t1 = t2 = t5 = w1 = 0

w2 = t2 = t5 = t8 = 0
. (4.7)

Notice that we see here the two explicit solutions to the vanishing of four minors in the

(w, t) variables. In order to write down the corresponding residue theorem in terms of the

(w, t) variables, we will heuristically identify the combination wa+1ta with the D-minor
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D(a, a + 1). The main motivation for this comes from the fact that whenever the minor

D(a, a + 1) is set to zero in a non-composite residue, these factors are never set to zero

simultaneously - as you can check for instance in (4.7) above. The two factors are however

both set to zero in a composite residue, as in (3.8) . This suggests that the wa+1 and ta

factors should be roughly thought of as two pieces of the (a, a + 1) minor.

Following this logic, let us choose the four functions in (4.3) to be

f1 = (w2t1)

f2 = (w3t2)

f3 = (w6t5)

f4 = (w8t7)(w4t3)(w5t4)(w7t6)(w1t8) . (4.8)

Keeping only the non-vanishing residues, we get

{t1, t2, t5, t7} + {t1, w3, t5, t3} + {t1, t2, t4, t5} + {t1, t2, t5, t6} + {t1, t2, t5, w1} (4.9)

+{w2, t2, t5, t7}+{w2, t2, t5, t3} + {w2, t2, w5, t5}+{w2, t2, w6, t6} + {w2, t2, t5, t8} = 0 ,

which is what we expected from the map (4.7).

4.3 Counting independent residues

We can deduce the number of independent residues by analyzing systematically all possible

residue theorems. For n = 8 there are five different kinds of residue theorems, associated

with different partitions of 8 into four pieces:

• 1+1+1+5: These are theorems of the kind (4.8), where we set f1 , f2 and f3 equal to

one minor each and set f4 equal to the product of the remaining five minors. There

are
(8
3

)

= 56 residues theorems of this type.

• 1 + 1 + 2 + 4: In this case we choose two f ’s to be single factors, one f to be the

product of two minors and the last f to be the product of the remaining four minors.

There are
(8
2

)

×
(6
2

)

= 420 theorems of this type.

• 1 + 1 + 3 + 3: There are
(8
2

)

×
(6
3

)

= 560 theorems in which two of the f ’s have one

minor each while the remaining two have three each.

• 1 + 2 + 2 + 3: There are 8 ×
(

7
2

)

×
(

5
2

)

= 1680 such residue theorems.

• 2 + 2 + 2 + 2: There are
(8
2

)

×
(6
2

)

×
(4
2

)

= 2520 such residue theorems.

This counting tells us that there are overall 5236 residue theorems involving the 138 non-

composite residues we described in section 4.1. Using a simple algorithm implemented in

Mathematica, we have generated a 5236 × 138 matrix that for each row has elements 1 or

0 depending on whether a specific residue appears in a give theorem or not. Mathematica

could easily compute the rank of this matrix, which turned out to be equal to 70. So,

including the two extra residues which cannot be split in our variables, we find that there

are 72 independent residues for the n = 8, k = 2 case. All other residues can be obtained

from these ones by using the residue theorems.
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4.3.1 Residue theorems involving composite residues

For completeness, we would like to describe how to write down in the new variables the

residue theorems with composite residues. These theorems necessarily involve splitting off

a given combination (wa+1ta) and assigning each factor to different functions fi. However,

we cannot split the factors arbitrarily. Lacking a full understanding of how to derive the

theorems directly from (3.1), we will try and derive the rules more heuristically.

The basic idea, for which we refer to [1], is that on the locus where the minor

D(a, a + 1) vanishes, the minor D(a + 1, a + 2) factorizes. This can be easily checked

from the Plücker relation

D(a + 1 a + 2)D(a c) = D(a a + 1)D(a + 2c) + D(a + 2 a)D(a + 1 c) ,

(where we assume that D(a c) is nonzero). We don’t expect to be able to break down

a minor into two factors unless we are on the locus where one of its adjacent minors

vanish. Rephrasing this idea, we don’t expect to be able to split the combination (wa+1ta)

unless the successive minor (wa+2ta+1) vanishes in all terms of the residue theorem. In

addition, for consistency, in the new configuration obtained by splitting wa+1 and ta, the

composite residue must be non-zero. These simple rules eliminate a lot of inconsistent

residue theorems and match our expectations in all the cases we have considered.

Let us discuss one example. Consider the set of functions (4.8). Because either w3 or

t2 appear in each term of the residue theorem, according to the rules proposed above we

are allowed to split (w2t1) as follows:

f1 = t1

f2 = (w3t2)

f3 = (w6t5)

f4 = (w8t7)(w4t3)(w5t4)(w7t6)(w1t8)w2 . (4.10)

Note that we couldn’t have split, say, (w6t5) , because the minor (w7t6) is not common to

all the terms. The residue theorem that follows from (4.10) is

{t1 t2 t5 t7}+{t1 t3 t5 w3}+{t1 t2 t4 t5}+{t1 t2 t5 t6}+{t1 t2 t5 w1}+{t1 t2 t5 w2} = 0 . (4.11)

The first five terms in this equation also appear in the original residue theorem (4.8), while

the last one is the composite residue.

Similarly, it is possible to use the (wa, ta) variables to express both the usual residue

theorems and those that include composite residues in a unified and natural manner. Of

course, since every composite residue is just a linear combination of non-composites, this

does not change the counting of independent residues that we performed earlier.

5 Higher n

Most of the discussion for n = 8 particles can be directly carried over to the higher n case,

as long as we restrict to n ≤ 12 , so we will be brief in our discussion and merely list the

results for the higher values of n .
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5.1 n = 9

We have checked that in this case too it is possible to see explicitly the distinct solutions

that follow from setting d = 2n − 12 minors to zero. Let us illustrate how this works with

an example. For n = 9 , we need to impose d = 6 conditions to define a residue. Consider

the set of conditions

D(12) = D(23) = D(34) = D(56) = D(78) = D(89) = 0 . (5.1)

They can be rewritten as

t1w2 = t2w3 = t3w4 = t5w6 = t7w8 = t8w9 = 0 (5.2)

and one can check that the non-vanishing solutions are the residues

{t1, t2, t3, t5, t7, t8} , {w2, t2, t3, t5, t7, t8} , {t1, w3, t3, t5, t7, t8} ,

{w2, t2, t3, t5, w8, t8} and {t1, w3, t3, t5, w8, t8} . (5.3)

There are five solutions, as expected on general grounds [1].

We find the same number of solutions in almost all cases, with precisely nine exceptions.

These are all of the form {wa, ta, ta+1, ta+3, ta+5, ta+7} and they are interesting because they

arise from 8-particle residues {ta+1, ta+3, ta+5, ta+7} via an inverse soft-factor, as described

in [43]. These particular 8-particle residues were already discussed in section 4.1, where we

pointed out that each of these corresponds to two residues.

So there are a total of
(9
6

)

× 5 = 420 non-composite residues, out of which we can

distinguish 411 in our new variables. It only remains to classify these by writing out the

residue theorems and finding out which of the residues are independent. There are only

three types of residue theorems to consider, corresponding to the three partitions of 9 into

six parts:

• 1 + 1 + 1 + 1 + 1 + 4 −→
(9
5

)

= 126 theorems

• 1 + 1 + 1 + 1 + 2 + 3 −→
(9
4

)

×
(5
2

)

= 1260 theorems

• 1 + 1 + 1 + 2 + 2 + 2 −→
(

9
3

)

×
(

6
2

)

×
(

4
2

)

= 7560 theorems .

Computing the rank of the matrix of residue theorems, as discussed earlier for n = 8, we

find that there are 84 independent residues written in the (t, w) variables. Including the 9

that cannot be split, we find a total of 93 independent non-composite residues.

5.2 n ≤ 12

As long as n < 12 , it is possible to follow the reasoning we have outlined in the previous

sections and find the non-composite residues, use the residue theorems to find the linearly

independent residues and write the composites as linear combinations of this basic set. We

list below a few of the interesting results for these cases.
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• For higher n , there is only one subtlety to consider when counting the residues. This

arises when the 8-particle residues which correspond to a 4-mass box are lifted to a

higher dimensional residue via inverse soft factors. In such cases, we saw that even

in the (w, t) variables, we could not split the two residues that solved the vanishing

of the four minors. So even when lifted to a higher n residue, each such configuration

should count as two residues.

• We have already seen that for n = 8 and n = 9 we find, respectively, 2 and 5 solutions

for each set of d vanishing minors. For n = 10 , solving for d = 8 vanishing minors,

we find 14 solutions. For n = 11 and d = 10 we find 42 solutions. These distinct

solutions can be explicitly described by the vanishing of specific combinations of w’s

and t’s.

• For n = 12 there is only one set of d = 12 consecutive minors one can write. Setting

them to zero, we find 130 solutions in the (wa, ta) variables. Three of these residues

are obtained from the four-mass box eight particle residue, so there would seem to be

133 solutions. There is however precisely one residue theorem that makes one of them

linearly dependent on the others, yielding 132 independent (non-composite) residues.

• All of these numbers are consistent with the general result quoted in [1], which is

that the number of solutions expected to setting d = 2n − 12 minors to zero is

# =
(2n − 12)!

(n − 6)!(n − 5)!
. (5.4)

Being able to reproduce this number for all the cases we have considered is a good

consistency check of our methods.

• Listing the residues in the (w, t) variables, it becomes clear that already for n > 10

there are no more “new” residues, in the sense that each non-vanishing residue has

to have at least n − 10 columns set to zero. Translated in our variables, this means

that for n > 10 every residue will result from imposing at least enough wa = ta = 0

conditions to reduce the effective size of the matrix to n = 10 .

5.3 n > 12

For n ≥ 12, our approach has to be modified. This is because the number of conditions

d becomes larger than the number of consecutive minors. Although listing the residues

seems straightforward enough, what is not clear to us is the role played, if at all, by residue

theorems for large n. So a classification of independent residues remains an outstanding

problem. Deriving the Littlewood-Richardson coefficient in (5.4) for n > 12 is also an open

problem, that might require finding a description of the non-consecutive minors in terms

of the (wa, ta) variables. We hope to address these issues in the future.

6 Discussion and summary of results

In this work we have put forward a proposal for the classification of residues of the Grass-

mannian integral and we have listed all residues for k = 2 and n ≤ 12. By suitably
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adapting the procedure that takes the spinor-helicity variables to momentum-twistors, we

introduced new variables that factor the minors that appear in the integral into irreducible

components. By irreducible we mean that these variables are the simplest building blocks

in terms of which any residue can be specified.

This has a direct consequence for the counting of solutions to a given a set of vanish-

ing minors. The number of solutions one expects can be obtained from the Littlewood-

Richardson decomposition of the self-intersection of a Schubert cycle; this has been checked

for many examples in [1]. For instance, for k = 2 , one expects two solutions for n = 8, five

solutions for n = 9 and so on, up to 132 solutions for n = 12. The fact that these distinct

solutions can be explicitly written out in the new variables is an important check on the

validity of our approach.

Another attractive feature is how both composite and non-composite residues appear

on the same footing: both of these correspond to the vanishing of some combination of w’s

and t’s and the composite residues are no more difficult to handle than the non-composite

ones. For small enough values of n, we used the residue theorems in the new variables

involving only non-composite residues to completely classify all the independent residues.

The computation is quite simple and it can be easily implemented in Mathematica.

It will, of course, be challenging and interesting to extend our analysis to higher values

of n, but especially to higher values of k where there are not many results available in the

literature. The key would be to identify the combination of new variables that corresponds

to the k × k minor in the general case. Once the identification is made, and the map

between the vanishing minors and the new variables found, the analysis should go along

the lines discussed for k = 2 in this work.

However there are many open questions still to be addressed. It would be interesting

to see if the iterative formula can be useful in the evaluation of the residues. Also, as we

discussed already in the main text, the status of residue theorems in the new variables needs

to be better understood, given that the number of delta functions seems to be insufficient

to localize the integral. Similarly, the precise nature of the Fourier transform and the role

played by the 3-momentum conserving delta functions are some points to be clarified. We

hope to address these issues in the future.
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