57 research outputs found

    A Study on Motivational Levels of Teachers in Lhuentse District, Bhutan

    Get PDF
    Many stakeholders in the country describe poor performance of learners is attributed to motivational level of teachers. Principal plays an important role in motivating teacher. This study focuses on factors that impact teachers’ motivation in Lhuentse District of Bhutan and on the role of Principal in enhancing teachers’ motivation. Many initiatives have been taken at the Ministry, Department, District and School levels to improve the learning outcomes of students. Tremendous work has been done to achieve a holistic development of the children by infusing the four pillars of Gross National Happiness (GNH), the eight dimensions and seventy-two indicators into the school curriculum. Enormous amount of money and time has been invested for the professional Development programs for the teachers. Principal in school are now seen to take a major role than just a mere administrator. Therefore, qualitative research has further conducted to find out some of the challenges that demoralize teachers professionally and to identify factors that contribute on motivation of teachers in the schools of the District

    GPS constraints on Indo-Asian convergence in the Bhutan Himalaya: Segmentation and potential for a 8.2-8.8 Mw earthquake

    Get PDF
    The seismogenic setting of Bhutan is unusual due to its lower-than-average 20th century seismic moment release (Drukpa et al. 2006), its absence of a reliable historical record, and its unusual location near the Shillong plateau where a great earthquake in 1897 resulted in ≈10 m of N/S shortening of the Indian plate to its south (Gahalaut et al. 2011). Despite these indicators that lower than normal convergence velocities should currently prevail, the GPS velocity between Shillong and Lhasa suggests that convergence in Sikkim and Bhutan occurs at velocities exceeding 20 mm/yr. GPS points between the Greater Himalaya and the Shillong Plateau measured in 2003, 2006 and 2012 permit us to quantify Bhutan\u27s seismogenic potential

    Lateral uniformity of India Plate strength over central and eastern Nepal

    Get PDF
    The current understanding of the Himalayan lithosphere stems mostly from cross-sections through the range at the longitude of the Kathmandu Basin. In this paper we laterally extend the analyses of structures and rheology along the Nepal Himalayas between the Pokhara valley and the Arun river. We take advantage of available information and a new data set including gravity measurements and a receiver function profile. It appears that the geometry of the Moho inferred from seismological profiles and long-wavelength gravity anomalies does not exhibit major East-West variations within the 350-km-wide study area. Using thermomechanical modelling, we show that the northward deepening of the Moho observed along profiles perpendicular to the main thrust faults can be interpreted simply as the bending of a strong India Plate. This result suggests a gradual mechanical decoupling between the crust and the mantle, leading to a northward decrease of the effective elastic thickness of the Indian lithosphere from∼75 km to∼25 km beneath the Ganga Basin and the Tibetan Plateau, respectively. Our results also confirm (partially) eclogitized lower Indian crust beneath southern Tibet. At shorter wavelengths, the observed gravity profiles exhibit some small lateral variations that can be interpreted in terms of east-west variations of the thickness of subsurface geological structures such as the Ganga Basin and the Tethyan Sedimentary Sequenc

    Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies

    Get PDF
    International audienceLateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes

    Temporal Probability Assessment and Its Use in Landslide Susceptibility Mapping for Eastern Bhutan

    Full text link
    Landslides are one of the major natural disasters that Bhutan faces every year. The monsoon season in Bhutan is usually marked by heavy rainfall, which leads to multiple landslides, especially across the highways, and affects the entire transportation network of the nation. The determinations of rainfall thresholds are often used to predict the possible occurrence of landslides. A rainfall threshold was defined along Samdrup Jongkhar–Trashigang highway in eastern Bhutan using cumulated event rainfall and antecedent rainfall conditions. Threshold values were determined using the available daily rainfall and landslide data from 2014 to 2017, and validated using the 2018 dataset. The threshold determined was used to estimate temporal probability using a Poisson probability model. Finally, a landslide susceptibility map using the analytic hierarchy process was developed for the highway to identify the sections of the highway that are more susceptible to landslides. The accuracy of the model was validated using the area under the receiver operating characteristic curves. The results presented here may be regarded as a first step towards understanding of landslide hazards and development of an early warning system for a region where such studies have not previously been conducted.</jats:p

    Stress transfer and connectivity between the Bhutan Himalaya and the Shillong Plateau

    Get PDF
    International audienceWithin the northern Indian Plate, the Shillong Plateau is a peculiar geodynamic terrane, hosting significant seismic activity outboard the Himalayan belt. This activity is often used as an argument to explain apparent reduced seismicity in the Bhutan Himalayas. Although current geophysical and geodetic data indicate that the Bhutan Himalayas accommodate more deformation than the Shillong Plateau, we aim to quantify the extent to which the two geodynamic regimes are connected and potentially interact through stress transfers. We compiled a map of major faults and earthquakes in the two regions and computed co-seismic stress transfer amplitudes. Our results indicate that the Bhutan Himalayas and the Shillong Plateau are less connected than previously suggested. Major earthquakes in either of the two regions mainly affect transverse faults connecting them, causing up to ~40 bar Coulomb stress change; however, this effect is clearly less on thrust faults of the either region (up to 1 bar only). The MW 8.25 1897 Assam earthquake that affected the Shillong Plateau did not cause a stress shadow on the Main Himalayan Thrust in Bhutan as previously suggested. Similarly, the Mw 8 ± 0.5 1714 Bhutan earthquake had negligible impact on stress accumulation on thrust faults bounding the Shillong Plateau. Furthermore, the main process shaping the regional stress patterns continues to be interseismic loading with complex boundary conditions in a diffuse deformation field involving the Bengal Basin and Indo-Burman Ranges. While both the Bhutan Himalayas and the Shillong Plateau exhibit a compressional regime, their stress evolutions are more weakly connected than hypothesized. Although our modelling suggests lateral increase in stress interactions, from west (less) to east (more), in the Bhutan Himalayas, a clearer picture will only emerge with better constrained fault geometries, slip rates, crustal structure, and seismicity catalogues in the entire region of distributed deformation

    Joint approach combining damage and paleoseismology observations constrains the 1714 A.D. Bhutan earthquake at magnitude 8±0.5

    Get PDF
    International audienceThe region of Bhutan is thought to be the only segment of the Himalayas not having experienced a major earthquake over the past half millennium. A proposed explanation for this apparent seismic gap is partial accommodation of the India-Asia convergence further south across the Shillong Plateau, yet the seismic behavior of the Himalayan megathrust in Bhutan is unknown. Here we present historical documents from the region reporting on an earthquake in 1714 A.D. and geological evidence of surface rupture to constrain the latest large event in this area. We compute various earthquake scenarios using empirical scaling relationships relating magnitude with intensity, source location and rupture geometry. Our results constrain the 1714 A.D. earthquake to have ruptured the megathrust in Bhutan, most likely during a M7.5–8.5 event. This finding reclassifies the apparent seismic gap to a former information gap and implies that the entire Himalayan arc has a high level of earthquake potential

    Imagerie géophysiques du chevauchement frontal Himalayen (MFT) du Sud Bhoutan : apports pour la géomorphologie et l'évaluation de l'aléa sismique

    No full text
    Recent studies based on surface observations from Sarpang area in southern-central Bhutan have estimated the Holocene slip rate of 20.8+/-8.8 mm/year. This value is based on a mean vertical uplift rate of 8.8+/-2.1 mm/year and assuming a constant frontal thrust dip angle of 25°+/-5° extrapolated from structural measurements. Since geometry of the fault is a key parameter for discerning the slip rate and its associated seismic hazard assessment, we employed near-surface geophysical approach to accurately constrain the Topographic Frontal Thrust (TFT) geometry at shallow depth. Based on proven effectiveness of near-surface geophysical techniques for studying active faults, we adopted gravity, seismic and electrical resistivity tomography.We deployed geophysical profiles at three key sites along the southern frontal areas of the Bhutan Himalayas. The first study area is in Sarpang, a small town located in southern-central Bhutan where we performed all three geophysical methods adopted. The second site is located in Phuentsholing in the south-western Bhutan, where we performed gravity and electrical resistivity survey. The third site is located between Sarpang and Phuentsholing, in the sub-district of Lhamoizingkha under Dagana district.A stochastic inversion approach was adopted to perform analysis of geophysical data collected from the above sites expect for Lhamoizingkha area. Unlike commonly used approaches based on search for the simplest model, the main advantages of this approach include its ability (1) to assess the fault geometry because no smoothing is applied, (2) to provide a measurement of the uncertainties on the obtained dip angle and (3) to allow trade-off analysis between geometric and either electrical resistivity, velocity or density properties.The stochastic inversion results from Sarpang site show a TFT that is characterized by a flat and listric-ramp geometry with a north dipping dip angle of ca 20°-30° at the upper depth of 0-5 m, steeply dipping angle of 70° in the middle 5-40 m depth and flattening with a dip angle of 20° at deeper depths. These new results allow us to estimate a minimum overthrusting slip rate of 10+/-2 mm/year on the TFT, which is about 60% of the far-field GPS convergence rate of ca 17 mm/year. Based on these constraints we propose that, in Sarpang site, significant deformation partitioning on different faults including the TFT, the Main Boundary Thrust (MBT) and the Frontal Back Thrust (FBT) cannot be ruled out. More importantly, assuming a constant slip rate, the dip angle variations constrained from the present study, corresponds to variations in the uplift rate with distance from the TFT. This, therefore, emphasizes the drawbacks in assuming constant dip angle measured from surface observations and uplift rate estimates based on terrace dating only at the front, which may significantly bias the slip rate estimation.Unlike in Sarpang, the TFT corresponds to the Main Frontal Thrust (MFT) in Phuentsholing. At this site a preliminary study suggests a MFT characterized by a flat and listric-ramp geometry. With additional terrace dating information, slip rate for the Phuentsholing area will be performed in a near future. Overall based on the stochastic inversion results, we propose a MFT geometry similar to that observed in Sarpang but with possible lateral variations in terms of deformation partitioning. In Lhamoizingkha area, the exact location of the MFT is not known. Our preliminary results suggest a complex fault trace and indicate that the MFT is located further north of the current resistivity line deployed in this area. Similar to Phuentsholing site (but contrary to Sarpang), we observed that the MFT is the most frontal structure and therefore most of the convergence in the area could be accommodated by the MFT, which is also in agreement with GPS observations.Des études récentes menées dans la région de Sarpang au sud du centre du Bhoutan estiment un taux de glissement Holocène de 20,8 +/- 8,8 mm/an sur le chevauchement frontal himalayen (TFT). Cette valeur est basée sur un taux de surrection moyen mesuré de 8,8 +/- 2,1 mm/an et en supposant pour ce chevauchement un pendage constant de 25° +/- 5°. La géométrie des failles est un paramètre clé dans l’estimation de la vitesse de glissement et donc dans l’évaluation de l’aléa sismique. Dans le cadre de ce travail, nous avons utilisé une approche géophysique de proche surface afin d’estimer précisément la géométrie de ce chevauchement.Nous avons déployé des profils géophysiques dans trois sites clés le long de la frontière sud du Bhoutan. La première zone d'étude se trouve à Sarpang, une petite ville située au centre du Bhoutan où nous avons effectué des mesures gravimétriques, sismiques et électriques. Le deuxième site est situé à Phuentsholing dans le sud-ouest du Bhoutan, où nous avons effectué des mesures gravimétriques et de résistivité électrique. Le troisième site est situé entre Sarpang et Phuentsholing, à Lhamoizingkha dans le district de Dagana.Excepté pour la région de Lhamoizingkha, une approche d'inversion stochastique a été adoptée pour analyser des données géophysiques collectées. Contrairement aux approches couramment utilisées basées sur la recherche du modèle le plus simple, les principaux avantages de cette approche sont sa capacité (1) à mieux estimer la géométrie des zones de discontinuité car aucun lissage n'est appliqué, (2) à fournir une mesure des incertitudes sur le pendage obtenu et (3) à permettre une analyse des relations possibles entre les propriétés géométriques et celles du milieu (résistivité électrique, vitesse ou densité).Les résultats d'inversion stochastique du site de Sarpang montrent un TFT qui se caractérise par une géométrie en plat-rampe-plat avec un pendage vers le nord d'environ 20°-30° dans la partie la plus superficielle (profondeur < 5 m), un pendage fort de 70° entre 5 m et 40 m de profondeur et un l'aplatissement avec un pendage de 20° au-delà de 40 m. Ces nouveaux résultats nous permettent d'estimer un taux minimal de glissement de 10 +/- 2 mm/an sur le TFT, soit environ 60% des 17 mm/an associés au taux de convergence GPS moyen obtenu en champ lointain. Sur la base de ces contraintes, il apparait donc qu’on ne puisse pas exclure la possibilité que la déformation soit distribuée sur plusieurs failles, comprenant le TFT, mais également d’autres chevauchements comme le MBT (au nord) ou le FBT (au sud). De plus, en supposant un taux de glissement constant, les variations de pendage obtenues induisent des variations du taux de surrection en fonction de la distance au TFT. Cela souligne les faiblesses des hypothèses couramment faites pour estimer les taux de glissement Holocène sur les failles sismogènes : (1) pendage constant estimé uniquement à partir des observations de surface et (2) estimations du taux de surrection en supposant une surrection identique pour une terrasse fluviale donnée.Contrairement à Sarpang, à Phuentsholing le TFT correspond au chevauchement frontal himalayen (MFT). Sur ce site, l’étude préliminaire que nous avons menée suggère un MFT ayant une géométrie de faille listrique. Des mesures de datations doivent maintenant être effectuées pour estimer le taux de glissement sur le MFT dans cette zone. Dans la région de Lhamoizingkha, l'emplacement exact du MFT n'est pas connu. Nos résultats préliminaires suggèrent une géométrie complexe de la trace de la faille en surface et indiquent que le MFT est situé plus au nord de la ligne de résistivité déployée dans cette zone. À l'instar du site de Phuentsholing (mais contrairement à Sarpang), nous avons observé que le MFT était la structure la plus frontale et que l’essentiel de la convergence dans cette zone pouvait être accommodé par le MFT, comme semble le suggérer les observations GPS
    corecore