923 research outputs found

    Safety of titanium dioxide nanoparticles in cosmetics

    Get PDF
    Titanium dioxide (TiO2) is widely used in a variety of products including cosmetics. TiO2 in its nanoparticle form (nano-TiO2) is now the only form used as an ultraviolet (UV) filter in sunscreens, but also in some day creams, foundations and lip balms. While its efficacy as a UV filter is proven in the prevention of skin cancers and sunburns, some concerns have been raised about its safety. Indeed, considering its small size, nano-TiO2 is suspected to penetrate dermal, respiratory or gastrointestinal barriers, disseminate in the body and therefore constitute a potential risk to the consumer. At the skin level, most studies performed in humans or animals showed that nano-TiO2 did not penetrate beyond the outer layers of stratum corneum to viable cells and did not reach the general circulation, either in healthy or in compromised skin. The Scientific Committee on Consumer Safety (SCCS) considers nano-TiO2 as a non-sensitizer and as mild- or non-irritant to skin and concludes in no evidence of carcinogenicity (supported by the European Chemicals Agency), mutagenicity or reproductive toxicity after dermal exposure to nano-TiO2. According to the SCCS, nano-TiO2 from sunscreens does not present any health risk when applied on the skin at a concentration up to 25%. However, the SCCS does not recommend the use of nano-TiO2 in formulations that may lead to exposure of the consumer's lungs by inhalation (sprayable products and powders). Indeed, even if human data are sparse and inconsistent, lung inflammation was reported in animals. In 2016, the EU Cosmetic Regulation made nano-TiO2 as an authorized UV filter, except in products that could lead to exposure of the lungs. After oral exposure, nano-TiO2 absorption and toxicity are limited. The incidental oral exposure to nano-TiO2 contained in lip balms is thus not expected to induce adverse health effects

    Safety review of phenoxyethanol when used as a preservative in cosmetics

    Get PDF
    Phenoxyethanol, or 2-phenoxyethanol, has a large spectrum of antimicrobial activity and has been widely used as a preservative in cosmetic products for decades. It is effective against various Gram-negative and Gram-positive bacteria, as well as against yeasts, and has only a weak inhibitory effect on resident skin flora. According to the European Scientific Committee on Consumer Safety, phenoxyethanol is safe for all consumers \u2013 including children of all ages \u2013 when used as a preservative in cosmetic products at a maximum concentration of 1%. Adverse systemic effects have been observed in toxicological studies on animals but only when the levels of exposure were many magnitudes higher (around 200-fold higher) than those to which consumers are exposed when using phenoxyethanol-containing cosmetic products. Despite its widespread use in cosmetic products, phenoxyethanol is a rare sensitizer. It can be considered as one of the most well-tolerated preservatives used in cosmetic products

    αvÎČ3-dependent cross-presentation of matrix metalloproteinase–2 by melanoma cells gives rise to a new tumor antigen

    Get PDF
    A large array of antigens that are recognized by tumor-specific T cells has been identified and shown to be generated through various processes. We describe a new mechanism underlying T cell recognition of melanoma cells, which involves the generation of a major histocompatibility complex class I–restricted epitope after tumor-mediated uptake and processing of an extracellular protein—a process referred to as cross-presentation—which is believed to be restricted to immune cells. We show that melanoma cells cross-present, in an αvÎČ3-dependent manner, an antigen derived from secreted matrix metalloproteinase–2 (MMP-2) to human leukocyte antigen A*0201-restricted T cells. Because MMP-2 activity is critical for melanoma progression, the MMP-2 peptide should be cross-presented by most progressing melanomas and represents a unique antigen for vaccine therapy of these tumors

    TCR Analyses of Two Vast and Shared Melanoma Antigen-Specific T Cell Repertoires: Common and Specific Features

    Get PDF
    Among Immunotherapeutic approaches for cancer treatment, the adoptive transfer of antigen specific T cells is still a relevant approach, that could have higher efficacy when further combined with immune check-point blockade. A high number of adoptive transfer trials have been performed in metastatic melanoma, due to its high immunogenic potential, either with polyclonal TIL or antigen-specific polyclonal populations. In this setting, the extensive characterization of T cell functions and receptor diversity of infused polyclonal T cells is required, notably for monitoring purposes. We developed a clinical grade procedure for the selection and amplification of polyclonal CD8 T cells, specific for two shared and widely expressed melanoma antigens: Melan-A and MELOE-1. This procedure is currently used in a clinical trial for HLA-A2 metastatic melanoma patients. In this study, we characterized the T-cell diversity (T-cell repertoire) of such T cell populations using a new RNAseq strategy. We first assessed the added-value of TCR receptor sequencing, in terms of sensitivity and specificity, by direct comparison with cytometry analysis of the T cell populations labeled with anti-Vß-specific antibodies. Results from these analyzes also confirmed specific features already reported for Melan-A and MELOE-1 specific T cell repertoires in terms of V-alpha recurrence usage, on a very high number of T cell clonotypes. Furthermore, these analyses also revealed undescribed features, such as the recurrence of a specific motif in the CDR3α region for MELOE-1 specific T cell repertoire. Finally, the analysis of a large number of T cell clonotypes originating from various patients revealed the existence of public CDR3α and ß clonotypes for Melan-A and MELOE-1 specific T cells. In conclusion, this method of high throughput TCR sequencing is a reliable and powerful approach to deeply characterize polyclonal T cell repertoires, and to reveal specific features of a given TCR repertoire, that would be useful for immune follow-up of cancer patients treated by immunotherapeutic approaches

    Smart E-Skin Cancer Care in Europe During and After the COVID-19 Pandemic: A Multidisciplinary Expert Consensus

    Full text link
    Introduction: Melanoma is the deadliest of all the skin cancers and its incidence is increasing every year in Europe. Patients with melanoma often present late to the specialist and treatment is delayed for many reasons (delay in patient consultation, misdiagnosis by general practitioners, and/or limited access to dermatologists). Beyond this, there are significant inequalities in skin cancer between population groups within the same country and between countries across Europe. The emergence of the COVID-19 pandemic only aggravated these health deficiencies. Objectives: The aim was to create an expert opinion about the challenges in skin cancer management in Europe during the post COVID-19 acute pandemic and to identify and discuss the implementation of new technologies (including e-health and artificial intelligence defined as "Smart Skin Cancer Care") to overcome them. Methods: For this purpose, an ad-hoc questionnaire with items addressing topics of skin cancer care was developed, answered independently and discussed by a multidisciplinary European panel of experts comprising dermatologists, dermato-oncologists, patient advocacy representatives, digital health technology experts, and health technology assessment experts. Results: After all panel of experts discussions, a multidisciplinary expert opinion was created. Conclusions: As a conclusion, the access to dermatologists is difficult and will be aggravated in the near future. This fact, together with important differences in Skin Cancer Care in Europe, suggest the need of a new approach to skin health, prevention and disease management paradigm (focused on integration of new technologies) to minimize the impact of skin cancer and to ensure optimal quality and equity

    A Novel Actinic Keratosis Field Assessment Scale For Grading Actinic Keratosis Disease Severity

    Get PDF
    Actinic keratosis (AK) lesions are surrounded by field cancerization (areas of subclinical, non-visible sun damage). Existing AK grading tools rely on AK counts, which are not reproducible. An Actinic Keratosis Field Assessment Scale (AK-FAS) for grading the severity of AK/field was developed. Standardized photographs of patients representing the full range of AK severity were collected. Six investigators independently rated each photograph according to 3 criteria: AK area (total skin area affected by AK lesions), hyperkeratosis and sun damage. Inter-rater reproducibility was good for all 3 criteria. Validation of the AK-FAS showed good reproducibility for AK area and hyperkeratosis, even for dermatologists untrained on use of the scale. In conclusion, the AK-FAS is objective, easy to use and implement, and reproducible. It incorporates assessment of the entire field affected by AK instead of relying on lesion counts. Use of the AK-FAS may standardize AK diagnosis, making it relevant to routine clinical practice

    Safety of Nanoclay/Spring Water Hydrogels: Assessment and Mobility of Hazardous Elements

    Get PDF
    The presence of impurities in medicinal products have to be controlled within safety limits from a pharmaceutical quality perspective. This matter is of special significance for those countries and regions where the directives, guidelines, or legislations, which prescribe the rules for the application of some products is quite selective or incomplete. Clay-based hydrogels are quite an example of this matter since they are topically administered, but, in some regions, they are not subjected to well-defined legal regulations. Since hydrogels establish an intimate contact with the skin, hazardous elements present in the ingredients could potentially be bioavailable and compromise their safety. The elemental composition and mobility of elements present in two hydrogels have been assessed. Sepiolite, palygorskite, and natural spring water were used as ingredients. The release of a particular element mainly depends on its position in the structure of the hydrogels, not only on its concentration in each ingredient. As a general trend, elements’ mobility reduced with time. Among the most dangerous elements, whose presence in cosmetics is strictly forbidden by European legal regulations, As and Cd were mobile, although in very low amounts (0.1 and 0.2 g/100 g of hydrogel, respectively). That is, assuming 100% bioavailability, the studied hydrogels would be completely safe at normal doses. Although there is no su cient evidence to confirm that their presence is detrimental to hydrogels safety, legally speaking, their mobility could hinder the authorization of these hydrogels as medicines or cosmetics. In conclusion, the present study demonstrates that hydrogels prepared with sepiolite, palygorskite, and AlicĂșn spring water could be topically applied without major intoxication risks.Instituto de Salud Carlos III Spanish Government CGL2016-80833-RJunta de AndalucĂ­a P18-RT-3786Ministerio de EducaciĂłn, Cultura y Deporte FPU15/0157

    Friend or foe? The current epidemiologic evidence on selenium and human cancer risk.

    Get PDF
    Scientific opinion on the relationship between selenium and the risk of cancer has undergone radical change over the years, with selenium first viewed as a possible carcinogen in the 1940s then as a possible cancer preventive agent in the 1960s-2000s. More recently, randomized controlled trials have found no effect on cancer risk but suggest possible low-dose dermatologic and endocrine toxicity, and animal studies indicate both carcinogenic and cancer-preventive effects. A growing body of evidence from human and laboratory studies indicates dramatically different biological effects of the various inorganic and organic chemical forms of selenium, which may explain apparent inconsistencies across studies. These chemical form-specific effects also have important implications for exposure and health risk assessment. Overall, available epidemiologic evidence suggests no cancer preventive effect of increased selenium intake in healthy individuals and possible increased risk of other diseases and disorders
    • 

    corecore