39 research outputs found

    Integrating mass spectrometry of intact protein complexes into structural proteomics

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92070/1/pmic7069.pd

    Structure elucidation of dimethylformamide-solvated alkylzinc cations in the gas phase

    No full text
    Organozinc iodides, useful for the synthesis of nonproteinogenic amino acids, are investigated in the gas phase by a combination of electrospray (ESI)-MS/MS, accurate ion mass measurements, and infrared multiphoton dissociation (IRMPD) spectroscopy employing a free electron laser. ESI allowed the full characterization of a set of dimethylformamide (DMF)-solvated alkylzinc cations formed by formal loss of F in the gas phase. Gas phase ion structures of the organozinc cations were identified and optimized by computations at the B3LYP/6-311G** level of theory. The calculations indicate that the zinc cation in gas phase alkylzine-DMF species preferentially adopts a tetrahedral coordination sphere with four ligands, namely the alkyl group, any internal coordinating group, and DMF (the number of which depends on the number of internal coordinating groups present). Besides the sequential loss of coordinated DMF, collision-induced dissociation (CID) patterns demonstrate that the zinc-DMF interaction in tetrahedral four-coordinate mono-DMF-zinc complex ions can be even stronger than covalent bonds. The IRMPD spectra of the alkylzine-DMF species examined show a rich pattern of indicative bands in the range of 1000-1800 cm(-1). All major features of the recorded IRMPD spectra are consistent with the computed IR spectra of the respective gas phase ion structures predicted by theory, allowing identification and assignment

    Evidence for the Role of Tetramethylethylenediamine in Aqueous Negishi Cross-Coupling: Synthesis of Nonproteinogenic Phenylalanine Derivatives on Water

    No full text
    The structure of the alkylzinc-tetramethylethylenediamine (TMEDA) cluster cation 3 has been determined in the gas phase by a combination of tandem mass spectrometry, infrared multiphoton dissociation (IRMPD) spectroscopy, and DFT calculations. Both sets of experimental results establish the existence of a strongly stabilizing interaction of TMEDA with the zinc cation. High-level DFT calculations on the cluster cation 3 allowed the identification of two low energy conformers, each featuring a four-coordinate zinc atom with a bidentate TMEDA ligand, and internal coordination from the carbonyl group of the Boc group to zinc. The experimental IRMPD spectrum is reproduced with an appropriately weighted combination of the IR spectra of the two conformers identified by theory. DFT calculations on the structure of the allcylzinc halide 2 with coordinated TMEDA using the PCM model of water solvent suggest that TMEDA can promote ionization of the zinc-iodine bond in organozinc iodides under aqueous conditions, providing a credible explanation for the role of TMEDA in stabilizing the carbon-zinc bond. Reaction of the serine-derived iodide 1 with aryl iodides "on water", promoted by nano zinc in the presence of PdCl2(Amphos)(2) (5 mol %) and TMEDA, leads to the formation of protected phenylalanine derivatives 4 in reasonable yields. In the case of ortho-substituted aryl iodides and aryl iodides that are solids at room temperature, conducting the reaction at 65 degrees C gives unproved results. In all cases, the product 5 of reductive dimerization of the iodide 1 is also isolated

    Evidence for the role of tetramethylethylenediamine in aqueous Negishi cross-coupling: synthesis of nonproteinogenic phenylalanine derivatives on water

    No full text
    The structure of the alkylzinc−tetramethylethyl-enediamine (TMEDA) cluster cation 3 has been determined in the gas phase by a combination of tandem mass spectrometry, infrared multiphoton dissociation (IRMPD) spectroscopy, and DFT calculations. Both sets of experimental results establish the existence of a strongly stabilizing interaction of TMEDA with the zinc cation. High-level DFT calculations on the alkylzinc−TMEDA cluster cation 3 allowed the identification of two low energy conformers, each featuring a four-coordinate zinc atom with a bidentate TMEDA ligand, and internal coordination from the carbonyl group of the Boc group to zinc. The experimental IRMPD spectrum is reproduced with an appropriately weighted combination of the IR spectra of the two conformers identified by theory. DFT calculations on the structure of the alkylzinc halide 2 with coordinated TMEDA using the PCM model of water solvent suggest that TMEDA can promote ionization of the zinc−iodine bond in organozinc iodides under aqueous conditions, providing a credible explanation for the role of TMEDA in stabilizing the carbon−zinc bond. Reaction of the serine-derived iodide 1 with aryl iodides "on water", promoted by nano zinc in the presence of PdCl2(Amphos)2 (5 mol %) and TMEDA, leads to the formation of protected phenylalanine derivatives 4 in reasonable yields. In the case of ortho-substituted aryl iodides and aryl iodides that are solids at room temperature, conducting the reaction at 65 °C gives improved results. In all cases, the product 5 of reductive dimerization of the iodide 1 is also isolated

    Gas-phase study of new organozinc reagents by IRMPD-spectroscopy, computational modelling and tandem-MS

    No full text
    An extensive set of organozinc iodides, useful for Negishi-type cross-coupling reactions, are investigated as respective cations after formal loss of iodide in the gas phase. Firstly, two new alkylzinc compounds derived from Tyrosine (Tyr) and Tryptophan (Trp) are closely examined. Secondly, the influence of specific protecting groups on the subtle balance between intra-and intermolecular coordination of zinc in these reagents is probed through trifluoroacetyl (TFA)-derivatized alkylzinc compounds. Finally, the influence of the strongly coordinating bidentate ligand N,N,N',N'-tetramethylethylenediamine (TMEDA) on the structure of alkylzinc cations is further explored in order to better understand the stability of the respective complexes towards water. A combination of electrospray (ESI)-MS/MS, accurate ion mass measurements, infrared multiple-photon dissociation (IRMPD) spectroscopy and computational modelling allowed the full characterisation of all dimethylformamide (DMF)-solvated and TMEDA-coordinated alkylzinc cations in the gas phase. The calculations indicate that the zinc cation in gas-phase alkylzinc-DMF or TMEDA-complex ions preferentially adopts a tetrahedral coordination sphere with four ligands. Additionally, conformers with only three binding partners bound to zinc but with effectively combined hydrogen-bond interactions are also found. Collision induced dissociation (CID) patterns demonstrate that the zinc-DMF interaction in tetrahedral four-coordinate mono-DMF-zinc complex ions as well as the interaction between TMEDA and zinc in the corresponding complex ions is even stronger than typical covalent bonds. In most cases, all major features of the IRMPD spectra are consistent with only a single major isomer, allowing secured identification and assignment
    corecore