1,171 research outputs found

    Dispersion relation formalism for virtual Compton scattering and the generalized polarizabilities of the nucleon

    Get PDF
    A dispersion relation formalism for the virtual Compton scattering (VCS) reaction on the proton is presented, which for the first time allows a dispersive evaluation of 4 generalized polarizabilities at a four-momentum transfer Q2≀Q^2 \leq 0.5 GeV2^2. The dispersive integrals are calculated using a state-of-the-art pion photo- and electroproduction analysis. The dispersion formalism provides a new tool to analyze VCS experiments above pion threshold, thus increasing the sensitivity to the generalized polarizabilities of the nucleon.Comment: 4 pages, 2 figure

    Dispersion relation formalism for virtual Compton scattering off the proton

    Get PDF
    We present in detail a dispersion relation formalism for virtual Compton scattering (VCS) off the proton from threshold into the Δ(1232)\Delta(1232)-resonance region. Such a formalism can be used as a tool to extract the generalized polarizabilities of the proton from both unpolarized and polarized VCS observables over a larger energy range. We present calculations for existing and forthcoming VCS experiments and demonstrate that the VCS observables in the energy region between pion production threshold and the Δ(1232)\Delta(1232)-resonance show an enhanced sensitivity to the generalized polarizabilities.Comment: 51 pages, 15 figure

    Dispersion analysis for generalized spin polarizabilities

    Get PDF
    We report on a dispersion relation formalism for the virtual Compton scattering (VCS) reaction on the proton, which for the first time allows a dispersive evaluation of 4 generalized polarizabilities. The dispersion formalism provides a new tool to analyze VCS experiments above pion threshold, thus increasing the sensitivity to the generalized polarizabilities of the nucleon.Comment: 5pages, 2 figures, to appear in the Proceedings of the Symposium on the Gerasimov-Drell-Hearn Sum Rule and the Spin Structure in the Nucleon Resonance Region (GDH2000), June 14-17 2000, Mainz, German

    The Counting of Generalized Polarizabilities

    Get PDF
    We demonstrate a concise method to enumerate the number of generalized polarizabilities---quantities characterizing the independent observables in singly-virtual Compton scattering---for a target particle of arbitrary spin s. By using crossing symmetry and J^{PC} conservation, we show that this number is (10s+1+delta_{s,0}).Comment: 10 pages, revtex4, no figures. Version to appear in Phys. Rev. D. Paper now divided into sections and clarifying comments added, but physics content unchange

    HS Hya about to turn off its eclipses

    Full text link
    Aims: We aim to perform the first long-term analysis of the system HS Hya. Methods: We performed an analysis of the long-term evolution of the light curves of the detached eclipsing system HS Hya. Collecting all available photometric data since its discovery, the light curves were analyzed with a special focus on the evolution of system's inclination. Results: We find that the system undergoes a rapid change of inclination. Since its discovery until today the system's inclination changed by more than 15 deg. The shape of the light curve changes, and now the eclipses are almost undetectable. The third distant component of the system is causing the precession of the close orbit, and the nodal period is about 631 yr. Conclusions: New precise observations are desperately needed, preferably this year, because the amplitude of variations is decreasing rapidly every year. We know only 10 such systems on the whole sky at present.Comment: 4 pages, 3 figures, published in 2012A&A...542L..23

    Constraints on the time-scale of nuclear breakup from thermal hard-photon emission

    Get PDF
    Measured hard photon multiplicities from second-chance nucleon-nucleon collisions are used in combination with a kinetic thermal model, to estimate the break-up times of excited nuclear systems produced in nucleus-nucleus reactions at intermediate energies. The obtained nuclear break-up time for the 129^{129}{Xe} + nat^{nat}{Sn} reaction at 50{\it A} MeV is Δ\Deltaτ\tau ≈\approx 100 -- 300 fm/cc for all reaction centralities. The lifetime of the radiating sources produced in seven other different heavy-ion reactions studied by the TAPS experiment are consistent with Δ\Deltaτ\tau ≈\approx 100 fm/cc, such relatively long thermal photon emission times do not support the interpretation of nuclear breakup as due to a fast spinodal process for the heavy nuclear systems studied.Comment: 11 pages, 9 figures, submitted to EPJ

    Low-energy and low-momentum representation of the virtual Compton scattering amplitude

    Get PDF
    We perform an expansion of the virtual Compton scattering amplitude for low energies and low momenta and show that this expansion covers the transition from the regime to be investigated in the scheduled photon electroproduction experiments to the real Compton scattering regime. We discuss the relation of the generalized polarizabilities of virtual Compton scattering to the polarizabilities of real Compton scattering.Comment: 13 pages, LaTeX2e/RevTeX, no figure
    • 

    corecore