29 research outputs found

    Indomethacin induces apoptosis via a MRP1-dependent mechanism in doxorubicin-resistant small-cell lung cancer cells overexpressing MRP1

    Get PDF
    Small-cell lung cancers (SCLCs) initially respond to chemotherapy, but are often resistant at recurrence. The non-steroidal anti-inflammatory drug indomethacin is an inhibitor of multidrug resistance protein 1 (MRP1) function. The doxorubicin-resistant MRP1-overexpressing human SCLC cell line GLC4-Adr was highly sensitive for indomethacin compared with the parental doxorubicin-sensitive line GLC4. The purpose of this study was to analyse the relationship between hypersensitivity to indomethacin and MRP1 overexpression. The experimental design involved analysis of the effect of MRP1 downregulation on indomethacin-induced cell survival and apoptosis in GLC4-Adr and GLC4, using siRNA. In addition the effect of indomethacin on glutathione levels and mitochondrial membrane potential was investigated. Small interfering RNAs directed against MRP1 reduced MRP1 mRNA levels twofold and reduced efflux pump function of MRP1, which was reflected by a 1.8-fold higher accumulation of MRP1 substrate carboxyfluorescein, in si-MRP1 versus si-Luciferase-transfected GLC4-Adr cells. Multidrug resistance protein 1 downregulation decreased initial high apoptosis levels 2-fold in GLC4-Adr after indomethacin treatment for 24 h, and increased cell survival (IC50) from 22.8±2.6 to 30.4±5.1 μM following continuous indomethacin exposure. Multidrug resistance protein 1 downregulation had no effect on apoptosis in GLC4 or on glutathione levels in both lines. Although indomethacin (20 μM) for 2 h decreased glutathione levels by 31.5% in GLC4-Adr, complete depletion of cellular glutathione by L-buthionine (S,R)-sulphoximine only resulted in a small increase in indomethacin-induced apoptosis in GLC4-Adr, demonstrating that a reduced cellular glutathione level is not the primary cause of indomethacin-induced apoptosis. Indomethacin exposure decreased mitochondrial membrane potential in GLC4-Adr cells, suggesting activation of the mitochondrial apoptosis pathway. Indomethacin induces apoptosis in a doxorubicin-resistant SCLC cell line through an MRP1-dependent mechanism. This may have implications for the treatment of patients with MRP1-overexpressing tumours

    Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909

    Get PDF
    BACKGROUND: Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. METHODS: In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. RESULTS: A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = -0.93 [95% CI: -1.0, -0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = -0.93 [95% CI: -0.99, -0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5-9], control group median 9 days [range 7-9]). CONCLUSIONS: Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. TRIAL REGISTRATION: ClinicalTrials.gov [NCT00984763]

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    Violence against Women and Gastroschisis: A Case-Control Study

    Get PDF
    Background: Gastroschisis, a birth defect characterized by herniated fetal abdominal wall, occurs more commonly in infants born to teenage and young mothers. Ischemia of the vascular vitelline vessels is the likely mechanism of pathogenesis. Given that chronic stress and violence against women are risk factors for cardiovascular disease we explored whether these may represent risk factors for gastroschisis, when they occur during pregnancy. A case-control study was conducted, with 15 incident cases of children born with gastroschisis in the Region of Murcia, Spain, from December 2007 to June 2013. Forty concurrent controls were recruited at gestation weeks 20–24 or post-partum. All mothers of cases and controls completed a comprehensive, in-person, ‘green sheet’ questionnaire on environmental exposures. Results: Mothers of children with gastroschisis were younger, smoked more cigarettes per week relative to controls, were exposed to higher amounts of illegal drugs, and suffered from domestic violence more frequently than the controls. Multivariable logistic regression analysis highlights periconceptional ‘gender-related violence’ (OR: 16.6, 95% CI 2.7 to 101.7) and younger maternal age (OR 1.1, 95% CI 1.0–1.3). Conclusions: Violence against pregnant women is associated with birth defects, and should be studied in more depth as a cause-effect teratogenic. Psychosocial risk factors, including gender-based violence, are important for insuring the health and safety of the pregnant mother and the fetus
    corecore