22 research outputs found

    Theoretical and experimental study of second harmonic generation from the surface of the topological insulator Bi_2Se_3

    Get PDF
    We develop a theoretical model that describes the second harmonic generation of light from the surface of the topological insulator Bi_2Se_3 and experimentally demonstrate that the technique is sensitive to the surface electrons. By performing a crystal symmetry analysis of Bi_2Se_3 (111) we determine the nonlinear electric susceptibility tensor elements that give rise to second harmonic generation. Using these results, we present a phenomenological model that shows that the relative magnitudes of these tensor elements can be determined by measuring the polarization and intensity of the radiated second harmonic light as a function of the in-plane crystal orientation and incident laser polarization. We describe optical techniques capable of isolating second harmonic light and, using these techniques, we measure the first-order linear optical and second-order nonlinear optical responses as a function of crystal orientation and laser polarization on bulk single crystals of Bi_2Se_3 (111). The experimental results are consistent with our theoretical description. By comparing the data to our theoretical model we determine that a portion of the measured second harmonic light originates from the accumulation region of Bi_2Se_3 (111), which we confirm by performing surface doping-dependent studies. Our results show that second harmonic generation is a promising tool for spectroscopic studies of topological surfaces and buried interfaces

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-<it>O-</it>acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals.</p> <p>Results</p> <p>Two <it>Fusarium </it>trichothecene 3-<it>O-</it>acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (<it>Saccharomyces cerevisiae</it>) during a series of small-scale ethanol fermentations using barley (<it>Hordeum vulgare</it>). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red<sup>®</sup>, which also consumed galactose when present in the mash.</p> <p>Conclusions</p> <p>This study demonstrates the potential of using yeast expressing a trichothecene 3-<it>O</it>-acetyltransferase to modify DON during commercial fuel ethanol fermentation.</p

    Continuous cultivation of photosynthetic microorganisms: approaches, applications and future trends

    Get PDF
    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modelling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed.This research work was supported by the grant SFRH/BPD/98694/2013 (Bruno Fernandes) from Fundacao para a Ciencia e a Tecnologia (Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013. The authors also thank the Project "BioInd Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028" Co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDE

    Theoretical and experimental study of second harmonic generation from the surface of the topological insulator Bi[subscript 2]Se[subscript 3]

    No full text
    We develop a theoretical model that describes the second harmonic generation of light from the surface of the topological insulator Bi[subscript 2]Se[subscript 3] and experimentally demonstrate that the technique is sensitive to the surface electrons. By performing a crystal symmetry analysis of Bi[subscript 2]Se[subscript 3](111) we determine the nonlinear electric susceptibility tensor elements that give rise to second harmonic generation. Using these results, we present a phenomenological model that shows that the relative magnitudes of these tensor elements can be determined by measuring the polarization and intensity of the radiated second harmonic light as a function of the in-plane crystal orientation and incident laser polarization. We describe optical techniques capable of isolating second harmonic light and, using these techniques, we measure the first-order linear optical and second-order nonlinear optical responses as a function of crystal orientation and laser polarization on bulk single crystals of Bi[subscript 2]Se[subscript 3](111). The experimental results are consistent with our theoretical description. By comparing the data to our theoretical model we determine that a portion of the measured second harmonic light originates from the accumulation region of Bi[subscript 2]Se[subscript 3](111), which we confirm by performing surface doping-dependent studies. Our results show that second harmonic generation is a promising tool for spectroscopic studies of topological surfaces and buried interfaces.United States. Dept. of Energy (DE-FG02- 08ER46521
    corecore