119 research outputs found

    Shedding light on active species in Fe, Ni and Cu catalysis:photochemical, spectroscopic and electrochemical studies

    Get PDF
    Vele van de chemische omzettingen waar chemici in het laboratorium naar streven worden door de natuur vaak uitgevoerd met opmerkelijke reactiviteit en selectiviteit. In scherpe tegenstelling tot biologische systemen laten de door de mens gemaakte structurele en functionele modellen voor de biologische systemen vaak beperkte reactiviteit en selectiviteit zien als ze gebruikt worden in katalytische reacties. Het genereren van zogenaamde actieve intermediairen, de karakterisering hiervan met diverse spectroscopische technieken en het het begrijpen van hun rol in katalyse is van direct belang met betrekking tot het begrijpen van hun rol in biologische systemen. In dit proefschrift worden de synthese en karakterisering van diverse intermediairen zoals FeIV=O, FeIII-OR, FeIII-OCl, NiII-OCl and NiII-O• beschreven. Door gebruik te maken van een groot aantal technieken was het mogelijk om diverse van deze intermediairen definitief vast te stellen. Het werk dat in dit proefschrift wordt beschreven gaat met name om het verkrijgen en het spectroscopisch karakteriseren van potentiele actieve deeltjes, bestaande uit complexen van overgangsmetalen, die gevormd worden tijdens katalyse reacties. Er is uitgebreid gebruik gemaakt van elektrochemie en Raman en resonatie Raman spectroscopie om de eigenschappen van zowel een aantal ijzer en nikkel intermediairen als de interactie van koper complexen met DNA te begrijpen. Het doel was om een relatie te leggen tussen de analyse van welke deeltjes aanwezig zijn in oplossing en de katalytische activiteit

    In situ CCVD synthesis of carbon nanotubes within a commercial ceramic foam

    Get PDF
    Consolidated nanocomposite foams containing a large quantity of carbon nanotubes (CNTs) within millimetre-sized pores are prepared for the first time. A commercial ceramic foam is impregnated by a 60 g L21 slurry of a (Mg(12x)(Co0.75Mo0.25)xO solid solution (x = 0.01, 0.05, 0.1 and 0.2) powder in ethanol. Three successive impregnations led to deposits several tens of mm thick, with a good coverage of the commercial-ceramic pore walls but without closing the pores. The materials were submitted to a CCVD treatment in H2–CH4 atmosphere in order to synthesise the CNTs. When using attrition-milled powders, the carbon is mostly in the form of nanofibres or disordered carbon rather than CNTs. Using non-milled powders produces a less-compact deposit of catalytic material with a higher adherence to the walls of the ceramic foam. After CCVD, the carbon is mostly in the form of high-quality CNTs, as when using powder beds, their quantity being 2.5 times higher. The so-obtained consolidated nanocomposite materials show a multi-scale pore structuration

    A Non-Heme Iron Photocatalyst for Light-Driven Aerobic Oxidation of Methanol

    Get PDF
    Non-heme (L)FeIIIand (L)FeIII-O-FeIII(L) complexes (L=1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine) underwent reduction under irradiation to the FeIIstate with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT studies support a mechanism in which irradiation results in charge-transfer excitation of a FeIII-μ-O-FeIIIcomplex to generate [(L)FeIV=O]2+(observed transiently during irradiation in acetonitrile), and an equivalent of (L)FeII. Under aerobic conditions, irradiation accelerates reoxidation from the FeIIto the FeIIIstate with O2, thus closing the cycle of methanol oxidation to methanal

    Facile Conversion of syn-[Fe-IV(O)(TMC)](2+) into the anti Isomer via Meunier's Oxo-Hydroxo Tautomerism Mechanism

    Get PDF
    The syn and anti isomers of [Fe-IV(O)(TMC)](2+) (TMC=tetramethylcyclam) represent the first isolated pair of synthetic non-heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that the syn isomer [Fe-IV(O-syn)(TMC)(NCMe)](2+) (2) converts into its anti form [Fe-IV(O-anti)(TMC)(NCMe)](2+) (1) in MeCN, an isomerization facilitated by water and monitored most readily by (HNMR)-H-1 and Raman spectroscopy. Indeed, when (H2O)-O-18 is introduced to 2, the nascent 1 becomes O-18-labeled. These results provide compelling evidence for a mechanism involving direct binding of a water molecule trans to the oxo atom in 2 with subsequent oxo-hydroxo tautomerism for its incorporation as the oxo atom of 1. The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts

    Formation and Reactivity of a Fleeting Ni<sup>III</sup> Bisphenoxyl Diradical Species

    Get PDF
    Cytochrome P450s and Galactose Oxidases exploit redox active ligands to form reactive high valent intermediates for oxidation reactions. This strategy works well for the late 3d metals where accessing high valent states is rather challenging. Herein, we report the oxidation of NiII(salen) (salen=N,N′-bis(3,5-di-tert-butyl-salicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with mCPBA (meta-chloroperoxybenzoic acid) to form a fleeting NiIII bisphenoxyl diradical species, in CH3CN and CH2Cl2 at −40 °C. Electrochemical and spectroscopic analyses using UV/Vis, EPR, and resonance Raman spectroscopies revealed oxidation events both on the ligand and the metal centre to yield a NiIII bisphenoxyl diradical species. DFT calculations found the electronic structure of the ligand and the d-configuration of the metal center to be consistent with a NiIII bisphenoxyl diradical species. This three electron oxidized species can perform hydrogen atom abstraction and oxygen atom transfer reactions

    Acid-Triggered O−O Bond Heterolysis of a Nonheme FeIII (OOH) Species for the Stereospecific Hydroxylation of Strong C−H Bonds

    Get PDF
    A novel hydroperoxoiron(III) species [FeIII(OOH)(MeCN)(PyNMe3)]2+ (3) has been generated by reaction of its ferrous precursor [FeII(CF3SO3)2(PyNMe3)] (1) with hydrogen peroxide at low temperatures. This species has been characterized by several spectroscopic techniques and cryospray mass spectrometry. Similar to most of the previously described low‐spin hydroperoxoiron(III) compounds, 3 behaves as a sluggish oxidant and it is not kinetically competent for breaking weak C−H bonds. However, triflic acid addition to 3 causes its transformation into a much more reactive compound towards organic substrates that is capable of oxidizing unactivated C−H bonds with high stereospecificity. Stopped‐flow kinetic analyses and theoretical studies provide a rationale for the observed chemistry, a triflic‐acid‐assisted heterolytic cleavage of the O−O bond to form a putative strongly oxidizing oxoiron(V) species. This mechanism is reminiscent to that observed in heme systems, where protonation of the hydroperoxo intermediate leads to the formation of the high‐valent [(Porph.)FeIV(O)] (Compound I)

    Transient Formation and Reactivity of a High-Valent Nickel(IV) Oxido Complex

    Get PDF
    A reactive high-valent dinuclear nickel(IV) oxido bridged complex is reported that can be formed at room temperature by reaction of [(L)2Ni(II)2(μ-X)3]X (X = Cl or Br) with NaOCl in methanol or acetonitrile (where L = 1,4,7-trimethyl-1,4,7-triazacyclononane). The unusual Ni(IV) oxido species is stabilized within a dinuclear tris-μ-oxido-bridged structure as [(L)2Ni(IV)2(μ-O)3]2+. Its structure and its reactivity with organic substrates are demonstrated through a combination of UV-vis absorption, resonance Raman, 1H NMR, EPR, and X-ray absorption (near-edge) spectroscopy, ESI mass spectrometry, and DFT methods. The identification of a Ni(IV)-O species opens opportunities to control the reactivity of NaOCl for selective oxidations

    H2O2 Oxidation by Fe-III-OOH Intermediates and Its Effect on Catalytic Efficiency

    Get PDF
    The oxidation of the C-H and C=C bonds of hydrocarbons with H2O2 catalyzed by non-heme iron complexes with pentadentate ligands is widely accepted as involving a reactive Fe-IV=O species such as [(N4Py)Fe-IV=O](2+) formed by homolytic cleavage of the O-O bond of an Fe-III-OOH intermediate (where N4Py is 1,1-bis(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine). We show here that at low H2O2 concentrations the Fe-IV=O species formed is detectable in methanol. Furthermore, we show that the decomposition of H2O2 to water and O-2 is an important competing pathway that limits efficiency in the terminal oxidant and indeed dominates reactivity except where only sub-/near-stoichiometric amounts of H2O2 are present. Although independently prepared [(N4Py)Fe-IV=O](2+) oxidizes stoichiometric H2O2 rapidly, the rate of formation of Fe-IV=O from the Fe-III-OOH intermediate is too low to account for the rate of H2O2 decomposition observed under catalytic conditions. Indeed, with excess H2O2, disproportionation to O-2 and H2O is due to reaction with the Fe-III-OOH intermediate and thereby prevents formation of the Fe-IV=O species. These data rationalize that the activity of these catalysts with respect to hydrocarbon/alkene oxidation is maximized by maintaining sub-/near-stoichiometric steady-state concentrations of H2O2, which ensure that the rate of the H2O2 oxidation by the Fe-III-OOH intermediate is less than the rate of the O-O bond homolysis and the subsequent reaction of the Fe-IV=O species with a substrate
    corecore