273 research outputs found

    Economics of innovation : a review in theory and models

    Get PDF
    Innovation activities contribute essentially to the regional dimension and growth. The technological infrastructure and innovation capabilities affect not only the regional growth, but also the whole periphery and economy as well. There are a lot of problems and questions regarding the measurement of innovation activities at a regional level. This paper attempts to analyze the whole framework of innovation statistics and in particular to examine the measurement and also the statistical estimation of innovation activities. On this context, it’s also aiming to emphasize and to review the appropriate techniques, the most common methods and the particular problems.peer-reviewe

    Designing steel to resist hydrogen embrittlement Part 2–precipitate characterisation

    Get PDF
    A novel, low-alloy steel has been designed for use in the oil and gas industry. Its high strength and hydrogen trapping potential are derived from a martensitic microstructure containing a dispersion of fine vanadium–molybdenum alloy carbides that evolve during tempering. In this second paper, the effect of quench rate from austenitisation and tempering conditions are investigated with respect to the microstructure. The alloy loses its tempering resistance following slow-cooling from austenitisation as a result of MC precipitation, leading to vanadium depletion and significant M(Formula presented.)C coarsening. This is predicted using computer simulation and confirmed by high energy X-ray diffraction, combined with electron microscopy.BP-ICA

    The Mediterranean Moored Multi-sensor Array (M3A): system development and initial results

    No full text
    International audienceOperational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a) to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b) to the limited throughput of the currently used satellite communication system. Key words. Atmospheric composition and structure (instruments and techniques.) Oceanography: general (ocean prediction) Oceanography: physical (upper ocean process

    High-energy, high-resolution, fly-scan X-ray phase tomography

    Get PDF
    High energy X-ray phase contrast tomography is tremendously beneficial to the study of thick and dense materials with poor attenuation contrast. Recently, the X-ray speckle-based imaging technique has attracted widespread interest because multimodal contrast images can now be retrieved simultaneously using an inexpensive wavefront modulator and a less stringent experimental setup. However, it is time-consuming to perform high resolution phase tomography with the conventional step-scan mode because the accumulated time overhead severely limits the speed of data acquisition for each projection. Although phase information can be extracted from a single speckle image, the spatial resolution is deteriorated due to the use of a large correlation window to track the speckle displacement. Here we report a fast data acquisition strategy utilising a fly-scan mode for near field X-ray speckle-based phase tomography. Compared to the existing step-scan scheme, the data acquisition time can be significantly reduced by more than one order of magnitude without compromising spatial resolution. Furthermore, we have extended the proposed speckle-based fly-scan phase tomography into the previously challenging high X-ray energy region (120 keV). This development opens up opportunities for a wide range of applications where exposure time and radiation dose are critical

    High-energy, high-resolution, fly-scan X-ray phase tomography

    Get PDF
    High energy X-ray phase contrast tomography is tremendously beneficial to the study of thick and dense materials with poor attenuation contrast. Recently, the X-ray speckle-based imaging technique has attracted widespread interest because multimodal contrast images can now be retrieved simultaneously using an inexpensive wavefront modulator and a less stringent experimental setup. However, it is time-consuming to perform high resolution phase tomography with the conventional step-scan mode because the accumulated time overhead severely limits the speed of data acquisition for each projection. Although phase information can be extracted from a single speckle image, the spatial resolution is deteriorated due to the use of a large correlation window to track the speckle displacement. Here we report a fast data acquisition strategy utilising a fly-scan mode for near field X-ray speckle-based phase tomography. Compared to the existing step-scan scheme, the data acquisition time can be significantly reduced by more than one order of magnitude without compromising spatial resolution. Furthermore, we have extended the proposed speckle-based fly-scan phase tomography into the previously challenging high X-ray energy region (120 keV). This development opens up opportunities for a wide range of applications where exposure time and radiation dose are critical

    Advancing Intra-operative Precision: Dynamic Data-Driven Non-Rigid Registration for Enhanced Brain Tumor Resection in Image-Guided Neurosurgery

    Full text link
    During neurosurgery, medical images of the brain are used to locate tumors and critical structures, but brain tissue shifts make pre-operative images unreliable for accurate removal of tumors. Intra-operative imaging can track these deformations but is not a substitute for pre-operative data. To address this, we use Dynamic Data-Driven Non-Rigid Registration (NRR), a complex and time-consuming image processing operation that adjusts the pre-operative image data to account for intra-operative brain shift. Our review explores a specific NRR method for registering brain MRI during image-guided neurosurgery and examines various strategies for improving the accuracy and speed of the NRR method. We demonstrate that our implementation enables NRR results to be delivered within clinical time constraints while leveraging Distributed Computing and Machine Learning to enhance registration accuracy by identifying optimal parameters for the NRR method. Additionally, we highlight challenges associated with its use in the operating room

    Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits

    Get PDF
    Lithium-ion batteries are being used in increasingly demanding applications where safety and reliability are of utmost importance. Thermal runaway presents the greatest safety hazard, and needs to be fully understood in order to progress towards safer cell and battery designs. Here, we demonstrate the application of an internal short circuiting device for controlled, on-demand, initiation of thermal runaway. Through its use, the location and timing of thermal runaway initiation is pre-determined, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second. The cause of unfavourable occurrences such as sidewall rupture, cell bursting, and cell-to-cell propagation within modules is elucidated, and steps towards improved safety of 18 650 cells and batteries are discussed

    Residual Lattice Strain and Phase Distribution in Ti 6Al 4V Produced by Electron Beam Melting

    Get PDF
    Residual stress strain and microstructure used in additively manufactured material are strongly dependent on process parameter combination. With the aim to better understand and correlate process parameters used in electron beam melting EBM of Ti 6Al 4V with resulting phase distributions and residual stress strains, extensive experimental work has been performed. A large number of polycrystalline Ti 6Al 4V specimens were produced with different optimized EBM process parameter combinations. These specimens were post sequentially studied by using high energy X ray and neutron diffraction. In addition, visible light microscopy, scanning electron microscopy SEM and electron backscattered diffraction EBSD studies were performed and linked to the other findings. Results show that the influence of scan speed and offset focus on resulting residual strain in a fully dense sample was not significant. In contrast to some previous literature, a uniform and Ti phase distribution was found in all investigated specimens. Furthermore, no strong strain variations along the build direction with respect to the deposition were found. The magnitude of strain in and phase show some variations both in the build plane and along the build direction, which seemed to correlate with the size of the primary grains. However, no relation was found between measured residual strains in and phase. Large primary grains and texture appear to have a strong effect on X ray based stress results with relatively small beam size, therefore it is suggested to use a large beam for representative bulk measurements and also to consider the prior grain size in experimental planning, as well as for mathematical modellin
    • …
    corecore