203 research outputs found
DNA topoisomerases participate in fragility of the oncogene RET
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
Symptom Remission and Brain Cortical Networks at First Clinical Presentation of Psychosis: The OPTiMiSE Study
Individuals with psychoses have brain alterations, particularly in frontal and temporal cortices, that may be particularly prominent, already at illness onset, in those more likely to have poorer symptom remission following treatment with the first antipsychotic. The identification of strong neuroanatomical markers of symptom remission could thus facilitate stratification and individualized treatment of patients with schizophrenia. We used magnetic resonance imaging at baseline to examine brain regional and network correlates of subsequent symptomatic remission in 167 medication-naïve or minimally treated patients with first-episode schizophrenia, schizophreniform disorder, or schizoaffective disorder entering a three-phase trial, at seven sites. Patients in remission at the end of each phase were randomized to treatment as usual, with or without an adjunctive psycho-social intervention for medication adherence. The final follow-up visit was at 74 weeks. A total of 108 patients (70%) were in remission at Week 4, 85 (55%) at Week 22, and 97 (63%) at Week 74. We found no baseline regional differences in volumes, cortical thickness, surface area, or local gyrification between patients who did or did not achieved remission at any time point. However, patients not in remission at Week 74, at baseline showed reduced structural connectivity across frontal, anterior cingulate, and insular cortices. A similar pattern was evident in patients not in remission at Week 4 and Week 22, although not significantly. Lack of symptom remission in first-episode psychosis is not associated with regional brain alterations at illness onset. Instead, when the illness becomes a stable entity, its association with the altered organization of cortical gyrification becomes more defined
Mutation Accumulation May Be a Minor Force in Shaping Life History Traits
Is senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive processes in a single model. Our model uses Penna's bit-strings to capture different age-specific mutational patterns. Each pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential effects of mutations on a life history trait - the optimal age at maturity. We find that mutations accumulate only at ages with negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation accumulation seems to be unimportant at evolutionarily relevant ages
Comparison of techniques used to count single-celled viable phytoplankton
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Applied Phycology 24 (2012): 751-758, doi:10.1007/s10811-011-9694-z.Four methods commonly used to count phytoplankton were evaluated based upon the precision of concentration
estimates: Sedgewick Rafter and membrane filter direct counts, flow cytometry, and flow-based imaging cytometry
(FlowCAM). Counting methods were all able to estimate the cell concentrations, categorize cells into size classes,
and determine cell viability using fluorescent probes. These criteria are essential to determine whether discharged
ballast water complies with international standards that limit the concentration of viable planktonic organisms based
on size class. Samples containing unknown concentrations of live and UV-inactivated phytoflagellates (Tetraselmis
impellucida) were formulated to have low concentrations (<100 ml-1) of viable phytoplankton. All count methods
used chlorophyll a fluorescence to detect cells and SYTOX fluorescence to detect non-viable cells. With the
exception of one sample, the methods generated live and non-viable cell counts that were significantly different
from each other, although estimates were generally within 100% of the ensemble mean of all subsamples from all
methods. Overall, percent coefficient of variation (CV) among sample replicates was lowest in membrane filtration
sample replicates, and CVs for all four counting methods were usually lower than 30% (although instances of ~60%
were observed). Since all four methods were generally appropriate for monitoring discharged ballast water,
ancillary considerations (e.g., ease of analysis, sample processing rate, sample size, etc.) become critical factors for
choosing the optimal phytoplankton counting method.This study was supported by the U.S. Coast Guard Research and Development Center under contract HSCG32-07-
X-R00018. Partial research support to DMA and DMK was provided
through NSF International Contract 03/06/394, and Environmental Protection Agency Grant RD-83382801-0
Proposed Role for COUP-TFII in Regulating Fetal Leydig Cell Steroidogenesis, Perturbation of Which Leads to Masculinization Disorders in Rodents
Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen production/action during a fetal ‘masculinization programming window’. We identify a potentially important role for Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ∼3-fold between e15.5-e21.5 which associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene (3β-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats (dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the origin of some human male reproductive disorders
Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice
<p>Abstract</p> <p>Background</p> <p>Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.</p> <p>Results</p> <p>In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains <it>Apoa2 </it>gene. Sequencing analysis revealed polymorphisms of <it>Apoa2 </it>in TH mice, suggesting <it>Apoa2 </it>as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs.</p> <p>Conclusions</p> <p>We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in <it>Apoa2 </it>gene are suggested to be responsible for the Chr 1 QTL linked to hypercholesterolemia and hypertriglyceridemia. Further, genetical genomic analysis led to potential candidate genes for the QTLs.</p
DNA Encoding an HIV-1 Gag/Human Lysosome-Associated Membrane Protein-1 Chimera Elicits a Broad Cellular and Humoral Immune Response in Rhesus Macaques
Previous studies of HIV-1 p55Gag immunization of mice have demonstrated the usefulness of targeting antigens to the cellular compartment containing the major histocompatibility complex type II (MHC II) complex molecules by use of a DNA antigen formulation encoding Gag as a chimera with the mouse lysosome-associated membrane protein (mLAMP/gag). In the present study, we have analyzed the magnitude and breadth of Gag-specific T-lymphocyte and antibody responses elicited in Rhesus macaques after immunization with DNA encoding a human LAMP/gag (hLAMP/gag) chimera. ELISPOT analyses indicated that the average Gag-specific IFN-γ response elicited by the hLAMP/gag chimera was detectable after only two or three naked DNA immunizations in all five immunized macaques and reached an average of 1000 spot-forming cells (SFC)/10(6) PBMCs. High IFN-γ ELISPOT responses were detected in CD8(+)-depleted cells, indicating that CD4(+) T-cells play a major role in these responses. The T-cell responses of four of the macaques were also tested by use of ELISPOT to 12 overlapping 15-amino acids (aa) peptide pools containing ten peptides each, encompassing the complete Gag protein sequence. The two Mamu 08 immunized macaques responded to eight and twelve of the pools, the Mamu B01 to six, and the other macaque to five pools indicating that the hLAMP/gag DNA antigen formulation elicits a broad T-cell response against Gag. Additionally, there was a strong HIV-1-specific IgG response. The IgG antibody titers increased after each DNA injection, indicating a strong amnestic B-cell response, and were highly elevated in all the macaques after three immunizations. Moreover, the serum of each macaque recognized 13 of the 49 peptides of a 20-aa peptide library covering the complete Gag amino acid sequence. In addition, HIV-1-specific IgA antibodies were present in the plasma and external secretions, including nasal washes. These data support the findings of increased immunogenicity of genetic vaccines encoded as LAMP chimeras, including the response to DNA vaccines by non-human primates
Assessment of fall-related self-efficacy and activity avoidance in people with Parkinson's disease
<p>Abstract</p> <p>Background</p> <p>Fear of falling (FOF) is common in Parkinson's disease (PD), and it is considered a vital aspect of comprehensive balance assessment in PD. FOF can be conceptualized differently. The Falls-Efficacy Scale (FES) assesses fall-related self-efficacy, whereas the Survey of Activities and Fear of Falling in the Elderly (SAFFE) assesses activity avoidance due to the risk of falling. This study aimed at investigating the validity and reliability of FES and SAFFE in people with PD.</p> <p>Methods</p> <p>Seventy-nine people with PD (mean age; 64 years, SD 7.2) completed the Swedish version of FES(S), SAFFE and the physical functioning (PF) scale of the 36-Item Short-Form Health Survey (SF-36). FES(S) and SAFFE were administered twice, with an 8.8 (SD 2.3) days interval. Assumptions for summing item scores into total scores were examined and score reliability (Cronbach's alpha and test-retest reliability) were calculated. Construct validity was assessed by examining the pattern of Spearman correlations (r<sub>s</sub>) between the FES(S)/SAFFE and other variables, and by examining differences in FES(S)/SAFFE scores between fallers and non-fallers, genders, and between those reporting FOF and unsteadiness while turning.</p> <p>Results</p> <p>For both scales, item mean scores (and standard deviations) were roughly similar and corrected item-total correlations exceeded 0.4. Reliabilities were ≥0.87. FES(S)-scores correlated strongest (r<sub>s</sub>, -0.74, p < 0.001) with SAFFE-scores, whereas SAFFE-scores correlated strongest with PF-scores (r<sub>s</sub>, -0.76, p < 0.001). Both scales correlated weakest with age (r<sub>s </sub>≤ 0.08). Experiencing falls, unsteadiness while turning, and FOF was associated with lower fall-related self-efficacy and higher activity avoidance.</p> <p>Conclusions</p> <p>This study provides initial support for the score reliability and validity of the FES(S) and SAFFE in people with PD.</p
- …