183 research outputs found

    Large spin relaxation rates in trapped submerged-shell atoms

    Get PDF
    Spin relaxation due to atom-atom collisions is measured for magnetically trapped erbium and thulium atoms at a temperature near 500 mK. The rate constants for Er-Er and Tm-Tm collisions are 3.0 times 10^-10 cm^3 s^-1 and 1.1 times 10^-10 cm^3 s^-1, respectively, 2-3 orders of magnitude larger than those observed for highly magnetic S-state atoms. This is strong evidence for an additional, dominant, spin relaxation mechanism, electrostatic anisotropy, in collisions between these "submerged-shell" L > 0 atoms. These large spin relaxation rates imply that evaporative cooling of these atoms in a magnetic trap will be highly inefficient.Comment: 10 pages, 3 figure

    Who Invited You? The Complex Story Of Aquatic Invasive Species

    Get PDF
    Invasive species represent a global threat to ecosystems, human health, and the economy. A basic knowledge of invasive species biology is crucial to understand current and future impacts and implications. The purpose of this book is to provide a broad background on invasive species, and also details on specific examples through case studies. The students in the course Aquatic Invasive Species (MAR 442) at the University of New England in Biddeford, Maine, have researched and reviewed scientific literature to educate readers about these issues. The class, comprised of fifteen junior and senior Marine Science, Marine Affairs, Animal Behavior, and Environmental Sciences students, selected the different topics, presented the material, wrote the chapters, and assembled the final versions into this book. This book cannot be all inclusive, but we think this book will provide an excellent broad overview of the most important aspects of Invasive Species Biology and might stimulate the reader to dive deeper into the material.https://dune.une.edu/marinesci_studproj/1003/thumbnail.jp

    RECOVER: An Automated Cloud-Based Decision Support System for Post-fire Rehabilitation Planning

    Get PDF
    RECOVER is a site-specific decision support system that automatically brings together in a single analysis environment the information necessary for post-fire rehabilitation decision-making. After a major wildfire, law requires that the federal land management agencies certify a comprehensive plan for public safety, burned area stabilization, resource protection, and site recovery. These burned area emergency response (BAER) plans are a crucial part of our national response to wildfire disasters and depend heavily on data acquired from a variety of sources. Final plans are due within 21 days of control of a major wildfire and become the guiding document for managing the activities and budgets for all subsequent remediation efforts. There are few instances in the federal government where plans of such wide-ranging scope and importance are assembled on such short notice and translated into action more quickly. RECOVER has been designed in close collaboration with our agency partners and directly addresses their high-priority decision-making requirements. In response to a fire detection event, RECOVER uses the rapid resource allocation capabilities of cloud computing to automatically collect Earth observational data, derived decision products, and historic biophysical data so that when the fire is contained, BAER teams will have a complete and ready-to-use RECOVER dataset and GIS analysis environment customized for the target wildfire. Initial studies suggest that RECOVER can transform this information-intensive process by reducing from days to a matter of minutes the time required to assemble and deliver crucial wildfire-related data

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Antiferromagnetic metal phase in an electron-doped rare-earth nickelate

    Full text link
    Long viewed as passive elements, antiferromagnetic materials have emerged as promising candidates for spintronic devices due to their insensitivity to external fields and potential for high-speed switching. Recent work exploiting spin and orbital effects has identified ways to electrically control and probe the spins in metallic antiferromagnets, especially in noncollinear or noncentrosymmetric spin structures. The rare earth nickelate NdNiO3 is known to be a noncollinear antiferromagnet where the onset of antiferromagnetic ordering is concomitant with a transition to an insulating state. Here, we find that for low electron doping, the magnetic order on the nickel site is preserved while electronically a new metallic phase is induced. We show that this metallic phase has a Fermi surface that is mostly gapped by an electronic reconstruction driven by the bond disproportionation. Furthermore, we demonstrate the ability to write to and read from the spin structure via a large zero-field planar Hall effect. Our results expand the already rich phase diagram of the rare-earth nickelates and may enable spintronics applications in this family of correlated oxides.Comment: 25 pages, 4 figure

    Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons

    Get PDF
    Transport of mRNAs to diverse neuronal locations via RNA granules serves an important function in regulating protein synthesis within restricted sub-cellular domains. We recently detected the Huntington's disease protein huntingtin (Htt) in dendritic RNA granules; however, the functional significance of this localization is not known. Here we report that Htt and the huntingtin-associated protein 1 (HAP1) are co-localized with the microtubule motor proteins, the KIF5A kinesin and dynein, during dendritic transport of β-actin mRNA. Live cell imaging demonstrated that β-actin mRNA is associated with Htt, HAP1, and dynein intermediate chain in cultured neurons. Reduction in the levels of Htt, HAP1, KIF5A, and dynein heavy chain by lentiviral-based shRNAs resulted in a reduction in the transport of β-actin mRNA. These findings support a role for Htt in participating in the mRNA transport machinery that also contains HAP1, KIF5A, and dynein

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    NGC922 - A new drop-through ring galaxy

    Get PDF
    We have found the peculiar galaxy NGC922 to be a new drop-through ring galaxy using multi-wavelength (UV-radio) imaging and spectroscopic observations. Its `C'-shaped morphology and tidal plume indicate a recent strong interaction with its companion which was identified with these observations. Using numerical simulations we demonstrate that the main properties of the system can be generated by a high-speed off-axis drop-through collision of a small galaxy with a larger disk system, thus making NGC922 one of the nearest known collisional ring galaxies. While these systems are rare in the local Universe, recent deep HST images suggest they were more common in the early Universe.Comment: 5 pages, accepted for publication in MNRAS Letter

    Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration

    Get PDF
    Importance There are potential benefits and harms of hyperoxemia and hypoxemia for extremely preterm infants receiving more vs less supplemental oxygen. Objective To compare the effects of different target ranges for oxygen saturation as measured by pulse oximetry (Spo2) on death or major morbidity. Design, Setting, and Participants Prospectively planned meta-analysis of individual participant data from 5 randomized clinical trials (conducted from 2005-2014) enrolling infants born before 28 weeks’ gestation. Exposures Spo2 target range that was lower (85%-89%) vs higher (91%-95%). Main Outcomes and Measures The primary outcome was a composite of death or major disability (bilateral blindness, deafness, cerebral palsy diagnosed as ≥2 level on the Gross Motor Function Classification System, or Bayley-III cognitive or language score <85) at a corrected age of 18 to 24 months. There were 16 secondary outcomes including the components of the primary outcome and other major morbidities. Results A total of 4965 infants were randomized (2480 to the lower Spo2 target range and 2485 to the higher Spo2 range) and had a median gestational age of 26 weeks (interquartile range, 25-27 weeks) and a mean birth weight of 832 g (SD, 190 g). The primary outcome occurred in 1191 of 2228 infants (53.5%) in the lower Spo2 target group and 1150 of 2229 infants (51.6%) in the higher Spo2 target group (risk difference, 1.7% [95% CI, −1.3% to 4.6%]; relative risk [RR], 1.04 [95% CI, 0.98 to 1.09], P = .21). Of the 16 secondary outcomes, 11 were null, 2 significantly favored the lower Spo2 target group, and 3 significantly favored the higher Spo2 target group. Death occurred in 484 of 2433 infants (19.9%) in the lower Spo2 target group and 418 of 2440 infants (17.1%) in the higher Spo2 target group (risk difference, 2.8% [95% CI, 0.6% to 5.0%]; RR, 1.17 [95% CI, 1.04 to 1.31], P = .01). Treatment for retinopathy of prematurity was administered to 220 of 2020 infants (10.9%) in the lower Spo2 target group and 308 of 2065 infants (14.9%) in the higher Spo2 target group (risk difference, −4.0% [95% CI, −6.1% to −2.0%]; RR, 0.74 [95% CI, 0.63 to 0.86], P < .001). Severe necrotizing enterocolitis occurred in 227 of 2464 infants (9.2%) in the lower Spo2 target group and 170 of 2465 infants (6.9%) in the higher Spo2 target group (risk difference, 2.3% [95% CI, 0.8% to 3.8%]; RR, 1.33 [95% CI, 1.10 to 1.61], P = .003). Conclusions and Relevance In this prospectively planned meta-analysis of individual participant data from extremely preterm infants, there was no significant difference between a lower Spo2 target range compared with a higher Spo2 target range on the primary composite outcome of death or major disability at a corrected age of 18 to 24 months. The lower Spo2 target range was associated with a higher risk of death and necrotizing enterocolitis, but a lower risk of retinopathy of prematurity treatment
    • …
    corecore