80 research outputs found

    Validating a standardised test battery for synesthesia: Does the Synesthesia Battery reliably detect synesthesia?

    Get PDF
    Synesthesia is a neurological condition that gives rise to unusual secondary sensations (e.g., reading letters might trigger the experience of colour). Testing the consistency of these sensations over long time intervals is the behavioural gold standard assessment for detecting synesthesia (e.g., Simner, Mulvenna et al., 2006). In 2007 however, Eagleman and colleagues presented an online 'Synesthesia Battery' of tests aimed at identifying synesthesia by assessing consistency but within a single test session. This battery has been widely used but has never been previously validated against conventional long-term retesting, and with a randomly recruited sample from the general population. We recruited 2847 participants to complete The Synesthesia Battery and found the prevalence of grapheme-colour synesthesia in the general population to be 1.2%. This prevalence was in line with previous conventional prevalence estimates based on conventional long-term testing (e.g., Simner, Mulvenna et al., 2006). This reproduction of similar prevalence rates suggests that the Synesthesia Battery is indeed a valid methodology for assessing synesthesia. © 2015 The Authors

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Evaluating contact force based on displacement measurement of cantilever beams for MEMS switches and sensor applications

    No full text
    The low level of contact force, typical <;1mN, used in MEMS switches or relays, is often inferred from computational models based on the design geometry of the device. In this work we propose two methods to measure the contact force. The methods combine experimental measurements of cantilever beam displacement with computational models. Further to this we analyze the contact resistance of the beam in contact with a fixed and compliant surface. The fixed surface is Au coated Si, while the compliant surface is Au coated carbon nanotube surface designed to for electrical contact and low force sensing applications

    The effect on switching lifetime of chromium adhesion layers in gold-coated electrical contacts under cold and hot switching conditions

    No full text
    Gold is commonly used for electrical contacts due to its many desirable electrical and mechanical properties. Throughout the switch lifetime, the contacts are required to survive a large number of opening and closing cycles and therefore it is important to understand the failure mechanisms. Adhesion layers (e.g. chromium or titanium) can be deposited to increase the adhesion of the gold layer to the contact surface. In this work, the inclusion of a chromium adhesion layer shows an improvement of the switching lifetime of gold-coated electrical contacts under cold and hot switching conditions. These testing conditions further the understanding of the failure mechanisms (e.g. fine transfer, etc.). The mechanism of failure when no chromium adhesion layer was used is attributed to delamination of the gold layer from one contact to the other. This failure mechanism is different in the cases where a chromium adhesion layer is included. We present a model which was developed in line with experimental results. These describe the effect of load current on material transfer between gold contacts and the contact failure

    Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    Get PDF
    This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared to their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease of the pedestal confinement but is partially recovered with the injection of nitrogen.Comment: 30 pages, 16 figure
    corecore