25 research outputs found

    Top-down NO<sub>x</sub> emissions of european cities based on the downwind plume of modelled and space-borne tropospheric NO<sub>2</sub> columns

    Get PDF
    Top-down estimates of surface NOX emissions were derived for 23 European cities based on the downwind plume decay of tropospheric nitrogen dioxide (NO2) columns from the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) chemistry transport model (CTM) and from Ozone Monitoring Instrument (OMI) satellite retrievals, averaged for the summertime period (April–September) during 2013. Here we show that the top-down NOX emissions derived from LOTOS-EUROS for European urban areas agree well with the bottom-up NOX emissions from the MACC-III inventory data (R2 = 0.88) driving the CTM demonstrating the potential of this method. OMI top-down NOX emissions over the 23 European cities are generally lower compared with the MACC-III emissions and their correlation is slightly lower (R2 = 0.79). The uncertainty on the derived NO2 lifetimes and NOX emissions are on average ~55% for OMI and ~63% for LOTOS-EUROS data. The downwind NO2 plume method applied on both LOTOS-EUROS and OMI tropospheric NO2 columns allows to estimate NOX emissions from urban areas, demonstrating that this is a useful method for real-time updates of urban NOX emissions with reasonable accuracy.</p

    Recommendations for the spatial assessment of air quality resulting from the FP6 EU project Air4EU

    No full text
    Original article can be found at : http://www.inderscience.com/ Copyright Inderscience [Full text of this article is not available in the UHRA]Air4EU is an FP6 European project with the major aim of providing recommendations on methodologies for the spatial assessment of air quality on local, urban and regional scales. The emphasis is on methodologies that combine monitoring and modelling and on spatial assessment for regulatory purposes, i.e., the EU daughter directives. The recommendations coming from Air4EU are intended as guidance for authorities involved in air quality assessment at the city, national and European levels as well as institutes involved in air quality research and application. This paper provides some highlights from the recommendations and case studies that emerged from the project.Peer reviewe

    Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble

    No full text
    The Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) instrument, launched in October 2017, provides unique observations of atmospheric trace gases at a high resolution of about 5gkm, with near-daily global coverage, resolving individual sources like thermal powerplants, industrial complexes, fires, medium-scale towns, roads, and shipping routes. Even though Sentinel-5P (S5P) is a global mission, these datasets are especially well suited to test high-resolution regional-scale air quality (AQ) models and provide valuable input for emission inversion systems. In Europe, the Copernicus Atmosphere Monitoring Service (CAMS) has implemented an operational regional AQ forecasting capability based on an ensemble of several European models, available at a resolution of 0.1g. In this paper, we present comparisons between TROPOMI observations of nitrogen dioxide (NO2) and the CAMS AQ forecasts and analyses of NO2. We discuss the different ways of making these comparisons and present quantitative results in the form of maps for individual days, summer and winter months, and a time series for European subregions and cities between May 2018 and March 2021. The CAMS regional products generally capture the fine-scale daily and averaged features observed by TROPOMI in much detail. In summer, the comparison shows a close agreement between TROPOMI and the CAMS ensemble NO2 tropospheric columns with a relative difference of up to 15g% for most European cities. In winter, however, we find a significant discrepancy in the column amounts over much of Europe, with relative differences up to 50g%. The possible causes for these differences are discussed, focusing on the possible impact of retrieval and modeling errors. Apart from comparisons with the CAMS ensemble, we also present results for comparisons with the individual CAMS models for selected months. Furthermore, we demonstrate the importance of the free tropospheric contribution to the estimation of the tropospheric column and thus include profile information from the CAMS configuration of the ECMWF's (European Centre for Medium-Range Weather Forecasts) global integrated model above 3gkm altitude in the comparisons. We also show that replacing the global 1g a priori information in the retrieval by the regional 0.1g resolution profiles of CAMS leads to significant changes in the TROPOMI-retrieved tropospheric column, with typical increases at the emission hotspots up to 30g% and smaller increases or decreases elsewhere. As a spinoff, we present a new TROPOMI NO2 level 2 (L2) data product for Europe, based on the replacement of the original TM5-MP generated global a priori profile by the regional CAMS ensemble profile. This European NO2 product is compared with ground-based remote sensing measurements of six Pandora instruments of the Pandonia Global Network and nine Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments. As compared to the standard S5P tropospheric NO2 column data, the overall bias of the new product for all except two stations is 5g% to 12g% smaller, owing to a reduction in the multiplicative bias. Compared to the CAMS tropospheric NO2 columns, dispersion and correlation parameters with respect to the standard data are, however, superior

    Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS-regional air quality ensemble

    No full text
    International audienceThe Sentinel-5P TROPOMI instrument provides unique observations of atmospheric trace gases at a high resolution of about 5 km with near-daily global coverage, resolving individual sources like thermal power plants, industrial complexes, fires, medium-scale towns, roads and shipping routes. These datasets are especially well suited to test high-resolution regional-scale air quality (AQ) models and provide valuable input for regional emission inversion systems. In Europe, the Copernicus Atmosphere Monitoring Service (CAMS) has implemented an operational regional AQ forecasting capability for Europe based on an ensemble of 7 up to 11 European models. In the presentation we show comparisons between TROPOMI observations of nitrogen dioxide (NO2) and the CAMS AQ forecasts and analyses of NO2. We discuss the different ways of making these comparisons, and present the quantitative results for time series for regions and cities between May 2018 to March 2021, for summer and winter months and individual days. We demonstrate the importance of the free tropospheric contribution to the tropospheric column, and include profiles from the CAMS configuration of the ECMWF’s global integrated model above 3 km altitude in the comparison. The models generally capture the fine-scale daily and averaged features observed by TROPOMI in much detail. In summer, the quantitative comparison of the NO2 tropospheric column shows a close agreement, but in winter we find a significant discrepancy in the average column amount over Europe. Recently a new TROPOMI NO2 reprocessing with processor version 2.3.1 has become available, and impact of this new version on the comparisons is discussed. As spin-off, we present a new TROPOMI NO2 level-2 data product for Europe, based on the replacement of the original TM5-MP generated global a priori profile (1x1 degree resolution) by the regional CAMS ensemble profile at 0.1x0.1 degree resolution. This a-priori replacement leads to significant changes in the TROPOMI retrieved tropospheric column, with typical increases at the emission hotspots in the order of 20%. The European NO2 product is compared with ground-based remote sensing measurements of 6 PANDORA instruments of the Pandonia global network and 8 MAX-DOAS instruments. As compared to the standard S5P tropospheric NO2 column data, the overall bias of the new product is smaller owing to a reduction of the multiplicative bias linked to the profile shape

    Impact of the COVID-19 lockdown policies on reducing air pollution levels and related deaths in Europe

    No full text
    International audienceBACKGROUND AND AIM: Previous studies have reported a decrease in air pollution following the enforcement of lockdown measures during the first wave of the COVID-19 pandemic. However, these investigations were mostly based on simple pre-post comparisons using past years as a reference, and did not assess the role of different policy interventions. In this contribution, we quantitatively evaluated the association between various lockdown measures and the decrease in NO2, O3, PM2.5, and PM10 levels across 47 European cities and the associated short-term mortality in the period of February-July 2020. METHODS: We used data from several chemical transport models developed by the Copernicus Atmosphere Monitoring Service (CAMS) to define trends in air pollution under business-as-usual and lockdown scenarios, thus removing differences due to weather conditions and other differences affecting pre-post comparisons. We then applied an advanced spatio-temporal Bayesian non-linear mixed effect model to determine the association with stringency indices of individual policy measures, allowing non-linear relationships and geographical correlations. RESULTS: The findings indicate evidence of non-linear relationships, with a stronger decrease in NO2 and to a lesser extent PMs under very strict lockdown regimes. The effects of lockdown measures vary geographically, with a stronger decline in pollution in Southern and Central Europe. The comparative analysis of separate lockdown policies suggests important differences across interventions. Specifically, actions linked to school/workplace closure, limitations on gatherings, and stay-at-home requirements had strong effects, while restrictions on internal movement and international travels showed little impact. The observed decrease in pollution potentially resulted in hundreds of avoided deaths across the European cities. CONCLUSIONS: This study provides important evidence on the differential impacts of various policies implemented during the COVID-19 pandemic in decreasing the level of pollutants in urban areas across Europe

    Differential impact of government lockdown policies on reducing air pollution levels and related mortality in Europe

    Get PDF
    Previous studies have reported a decrease in air pollution levels following the enforcement of lockdown measures during the first wave of the COVID-19 pandemic. However, these investigations were mostly based on simple pre-post comparisons using past years as a reference and did not assess the role of different policy interventions. This study contributes to knowledge by quantifying the association between specific lockdown measures and the decrease in ­NO2, ­O3, ­PM2.5, and ­PM10 levels across 47 European cities. It also estimated the number of avoided deaths during the period. This paper used new modelled data from the Copernicus Atmosphere Monitoring Service (CAMS) to define business-as-usual and lockdown scenarios of daily air pollution trends. This study applies a spatio-temporal Bayesian non-linear mixed effect model to quantify the changes in pollutant concentrations associated with the stringency indices of individual policy measures. The results indicated non-linear associations with a stronger decrease in ­NO2 compared to ­PM2.5 and ­PM10 concentrations at very strict policy levels. Differences across interventions were also identified, specifically the strong effects of actions linked to school/workplace closure, limitations on gatherings, and stay-at-home requirements. Finally, the observed decrease in pollution potentially resulted in hundreds of avoided deaths across Europe

    Impact of the COVID-19 lockdown policies on reducing air pollution levels and related deaths in Europe

    No full text
    International audienceBACKGROUND AND AIM: Previous studies have reported a decrease in air pollution following the enforcement of lockdown measures during the first wave of the COVID-19 pandemic. However, these investigations were mostly based on simple pre-post comparisons using past years as a reference, and did not assess the role of different policy interventions. In this contribution, we quantitatively evaluated the association between various lockdown measures and the decrease in NO2, O3, PM2.5, and PM10 levels across 47 European cities and the associated short-term mortality in the period of February-July 2020. METHODS: We used data from several chemical transport models developed by the Copernicus Atmosphere Monitoring Service (CAMS) to define trends in air pollution under business-as-usual and lockdown scenarios, thus removing differences due to weather conditions and other differences affecting pre-post comparisons. We then applied an advanced spatio-temporal Bayesian non-linear mixed effect model to determine the association with stringency indices of individual policy measures, allowing non-linear relationships and geographical correlations. RESULTS: The findings indicate evidence of non-linear relationships, with a stronger decrease in NO2 and to a lesser extent PMs under very strict lockdown regimes. The effects of lockdown measures vary geographically, with a stronger decline in pollution in Southern and Central Europe. The comparative analysis of separate lockdown policies suggests important differences across interventions. Specifically, actions linked to school/workplace closure, limitations on gatherings, and stay-at-home requirements had strong effects, while restrictions on internal movement and international travels showed little impact. The observed decrease in pollution potentially resulted in hundreds of avoided deaths across the European cities. CONCLUSIONS: This study provides important evidence on the differential impacts of various policies implemented during the COVID-19 pandemic in decreasing the level of pollutants in urban areas across Europe
    corecore