99 research outputs found

    Efficacy of eleven antimicrobials against a gregarine parasite (Apicomplexa: Protozoa)

    Full text link

    Antiparasitic properties of cantharidin and the blister beetle berberomeloe majalis (Coleoptera: Meloidae)

    Get PDF
    Cantharidin (CTD) is a toxic monoterpene produced by blister beetles (Fam. Meloidae) as a chemical defense against predators. Although CTD is highly poisonous to many predator species, some have evolved the ability to feed on poisonous Meloidae, or otherwise beneficially use blister beetles. Great Bustards, Otis tarda, eat CTD-containing Berberomeloe majalis blister beetles, and it has been hypothesized that beetle consumption by these birds reduces parasite load (a case of self- medication). We examined this hypothesis by testing diverse organisms against CTD and extracts of B. majalis hemolymph and bodies. Our results show that all three preparations (CTD and extracts of B. majalis) were toxic to a protozoan (Trichomonas vaginalis), a nematode (Meloidogyne javanica), two insects (Myzus persicae and Rhopalosiphum padi) and a tick (Hyalomma lusitanicum). This not only supports the anti-parasitic hypothesis for beetle consumption, but suggests potential new roles for CTD, under certain conditions.This research was funded by MINECO/FEDER, Spain, Grant no. CTQ2015-64049-C3-1-R; Ministerio de EconomĂ­a y Competitividad, Spain (MINECO/FEDER), Grant no. CGL2017-87206-

    Molecular ecological basis of grasshopper (Oedaleus asiaticus) phenotypic plasticity under environmental selection

    Get PDF
    This research was supported by the Special Fund for Agro-scientific Research in the Public Interest (201003079), China, the earmarked fund for the China Agriculture Research System (CARS-35-07 and CARS-34-7B), the Innovation Project of the Chinese Academy of Agricultural Sciences, National Nature Science Foundation of China (31672485), and the CSC Scholarship from the China Scholarship Council. The transcriptome data of O. asiaticus females was submitted to SRA database in NCBI and have been released (ID: SRP059063).While ecological adaptation in insects can be reflected by plasticity of phenotype, determining the causes and molecular mechanisms for phenotypic plasticity (PP) remains a crucial and still difficult question in ecology, especially where control of insect pests is involved. Oedaleus asiaticus is one of the most dominant pests in the Inner Mongolia steppe and represents an excellent system to study phenotypic plasticity. To better understand ecological factors affecting grasshopper phenotypic plasticity and its molecular control, we conducted a full transcriptional screening of O. asiaticus grasshoppers reared in four different grassland patches in Inner Mongolia. Grasshoppers showed different degrees of PP associated with unique gene expressions and different habitat plant community compositions. Grasshopper performance variables were susceptible to habitat environment conditions and closely associated with plant architectures. Intriguingly, eco-transcriptome analysis revealed five potential candidate genes playing important roles in grasshopper performance, with gene expression closely relating to PP and plant community factors. By linking the grasshopper performances to gene profiles and ecological factors using canonical regression, we first demonstrated the eco-transcriptomic architecture of grasshopper phenotypic traits. Regression biplot revealed plant food type, plant density, coverage, and height were the main ecological factors influencing PP, while insect cuticle protein (ICP), negative elongation factor A (NELFA), and lactase-phlorizin hydrolase (LCT) were the key genes associated with PP. Our study gives a clear picture of gene-environment interaction in the formation and maintenance of PP and enriches our understanding of the transcriptional events underlying molecular control of rapid phenotypic plasticity associated with environmental variability. The findings of this study may also provide new targets for pest control and highlight the significance of ecological management practice on grassland conservation.Publisher PDFPeer reviewe

    Going Deeper: Metagenome of a Hadopelagic Microbial Community

    Get PDF
    The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above

    The Multicultural Classroom as a Comparative Law Site: A United Kingdom Perspective

    Get PDF
    This chapter studies the impact of the recent multicultural approach to comparative legal studies on comparative law teaching, with a focus on British debates and literature. I will argue that the multicultural turn of (comparative) legal teaching, reflected for example in a greater diversity of teaching techniques, a greater emphasis on minority issues and law &
 disciplines, responds to a multiplicity of motivations. Pedagogically, it is a response to the increasingly diverse backgrounds of students and their differing intellectual starting-points. Pragmatically, it is a means to boost students’ employability and intellectual versality in a job market that now values “cultural awareness skills”. Finally, conceptually, it is a tool designed to unravel the pluralistic nature of law. From these diverse drivers to the multicultural turn in (comparative) legal teaching, it is possible to identify similarities with other recent trends of globalisation and internationalisation of legal education. However, this article will submit that differences remain. Having analysed these differences, I will go on to argue and reveal that in them lie the core features of a multicultural approach to legal teaching and its intrinsic connections to comparative law, as the multicultural classroom itself becomes a comparative law site

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF
    • 

    corecore