9 research outputs found

    Physicochemical Characterization of Maltese Honey

    Get PDF
    The Maltese Islands are renowned for the production of genuine honey from different floral sources depending on the season and the location of the apiary. Honey samples were collected directly from local beekeepers over a period of 4 years. Each sample was coded and the details provided by the beekeepers were recorded. A total of 259 samples were collected. The distribution of the apiaries was also considered for the three honey seasons: spring, summer and autumn. All samples were tested for the parameters according to the EU Directive on Honey (2001/110/EC) and the Harmonised Methods of the International Honey Commission (2009). The samples were analysed for consistency (by appearance), moisture content and Brix (by refractometry), colour index, diastase, proline and hydroxymethylfurfural (by spectrophotometry), pH and electrical conductivity (by pH/conductivity meters), salinity (chloride meter), free acidity (by titrimetry), polyphenols (by the Folin-Ciocalteu test), sugar content (high performance liquid chromatography), antioxidant activity (by DPPH and FRAP) and antimicrobial activity. The Maltese honey can be classified into three seasons with distinctive physicochemical characteristics. Honey originating from particular season showed significantly different values for specific parameters. Typically, high sucrose content is found in spring honey and a high conductivity in autumn honey

    Sustainable development in higher education in Europe. Good practices compendium

    Get PDF
    Higher Education Institutions among all educational structures are vested with significant responsibility in implementing the concept of Sustainable Development, both to incorporate this concept within their activities (teaching, research, operations) and to widespread Sustainable Development in the society and business world. The report is the final product of Work Package 3 (WP3) entitled “Identifying sustainable and user-friendly Good Practices”. The objective is the identification and diffusion of Good Practices concerned with Education for Sustainable Development (ESD) in Higher Education Institutions. The topic is analysed in a broader sense, on one side considering the characterisation of the political and institutional framework, and on the other side describing formal and informal learning experiences in Higher Education Institutions. 36 Good Practices are discussed and presented in systematic forms, that have been categorized according to the following topics related to the implementation of Sustainable Development education: policies, institutional activities, teaching and practical experiences. The Good Practices represent a wide range of situations concerning different European countries, institutions, typologies of the initiatives, geographical levels of implementation. However in this diversity some characterizing aspects emerge: the holistic and interdisciplinary approaches to ESD, the attention in achieving tangible results, the involvement of local communities and the bottom-up approaches, the importance of partnerships and networking, the capacity building, the innovation of the initiatives, and the attention in building a framework favorable to Sustainable Development. The Good Practices were selected in a wider range of case studies, emerging from a “State of the Art” analysis in the field of Sustainable Development in the University Studies of Life Sciences in Europe, carried out within the ISLE project, and from the research of the project partners. The selection has been done in accordance with the criteria of transferability, pertinence, capacity building, user friendless, innovation, networking capacity and interdisciplinarity.peer-reviewe

    Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020: the combined effects of operation size, migration and queen replacement

    Get PDF
    Publication history: Accepted - 12 July 2022; Published online - 6 September 2022.This article presents managed honey bee colony loss rates over winter 2019/20 resulting from using the standardised COLOSS questionnaire in 37 countries. Six countries were from outside Europe, including, for the first time in this series of articles, New Zealand. The 30,491 beekeepers outside New Zealand reported 4.5% of colonies with unsolvable queen problems, 11.1% of colonies dead after winter and 2.6% lost through natural disaster. This gave an overall colony winter loss rate of 18.1%, higher than in the previous year. The winter loss rates varied greatly between countries, from 7.4% to 36.5%. 3216 beekeepers from New Zealand managing 297,345 colonies reported 10.5% losses for their 2019 winter (six months earlier than for other, Northern Hemisphere, countries). We modelled the risk of loss as a dead/empty colony or from unresolvable queen problems, for all countries except New Zealand. Overall, larger beekeeping operations with more than 50 colonies experienced significantly lower losses (p<0.001). Migration was also highly significant (p<0.001), with lower loss rates for operations migrating their colonies in the previous season. A higher proportion of new queens reduced the risk of colony winter loss (p<0.001), suggesting that more queen replacement is better. All three factors, operation size, migration and proportion of young queens, were also included in a multivariable main effects quasi-binomial GLM and all three remained highly significant (p<0.001). Detailed results for each country and overall are given in a table, and a map shows relative risks of winter loss at the regional level.Dutch Ministry of Agriculture, Nature and Food Quality (BO-43-011.03-005); Republic of Serbia, MPNTR-RS, through Grant No. III46002; Slovakia the project "Sustainable smart farming systems taking into account the future challenges 313011W112"; Slovenian Research Program P1-0164; Danish Beekeepers Association for their funding and support of the international LimeSurvey platform used by many participating countries; “Zukunft Biene 2” (grant number 101295/2) in Austria; University of Graz for open access

    Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020 : the combined effects of operation size, migration and queen replacement

    Get PDF
    This article presents managed honey bee colony loss rates over winter 2019/20 resulting from using the standardised COLOSS questionnaire in 37 countries. Six countries were from outside Europe, including, for the first time in this series of articles, New Zealand. The 30,491 beekeepers outside New Zealand reported 4.5% of colonies with unsolvable queen problems, 11.1% of colonies dead after winter and 2.6% lost through natural disaster. This gave an overall colony winter loss rate of 18.1%, higher than in the previous year. The winter loss rates varied greatly between countries, from 7.4% to 36.5%. 3216 beekeepers from New Zealand managing 297,345 colonies reported 10.5% losses for their 2019 winter (six months earlier than for other, Northern Hemisphere, countries). We modelled the risk of loss as a dead/empty colony or from unresolvable queen problems, for all countries except New Zealand. Overall, larger beekeeping operations with more than 50 colonies experienced significantly lower losses (

    ConservePlants: An integrated approach to conservation of threatened plants for the 21st Century

    No full text
    Even though plants represent an essential part of our lives offering exploitational, supporting and cultural services, we know very little about the biology of the rarest and most threatened plant species, and even less about their conservation status. Rapid changes in the environment and climate, today more pronounced than ever, affect their fitness and distribution causing rapid species declines, sometimes even before they had been discovered. Despite the high goals set by conservationists to protect native plants from further degradation and extinction, the initiatives for the conservation of threatened species in Europe are scattered and have not yielded the desired results. The main aim of this Action is to improve plant conservation in Europe through the establishment of a network of scientists and other stakeholders who deal with different aspects of plant conservation, from plant taxonomy, ecology, conservation genetics, conservation physiology and reproductive biology to protected area's managers, not forgetting social scientists, who are crucial when dealing with the general public. in situ plant conservation, ex situ plant conservation, conservation genetics, red lists of threatened plant species, citizen scienc

    ConservePlants: An integrated approach to conservation of threatened plants for the 21st Century

    Get PDF
    Even though plants represent an essential part of our lives offering exploitational, supporting and cultural services, we know very little about the biology of the rarest and most threatened plant species, and even less about their conservation status. Rapid changes in the environment and climate, today more pronounced than ever, affect their fitness and distribution causing rapid species declines, sometimes even before they had been discovered. Despite the high goals set by conservationists to protect native plants from further degradation and extinction, the initiatives for the conservation of threatened species in Europe are scattered and have not yielded the desired results. The main aim of this Action is to improve plant conservation in Europe through the establishment of a network of scientists and other stakeholders who deal with different aspects of plant conservation, from plant taxonomy, ecology, conservation genetics, conservation physiology and reproductive biology to protected area's managers, not forgetting social scientists, who are crucial when dealing with the general public. in situ plant conservation, ex situ plant conservation, conservation genetics, red lists of threatened plant species, citizen scienc

    ConservePlants : an integrated approach to conservation of threatened plants for the 21st century

    Get PDF
    Even though plants represent an essential part of our lives offering exploitational, supporting and cultural services, we know very little about the biology of the rarest and most threatened plant species, and even less about their conservation status. Rapid changes in the environment and climate, today more pronounced than ever, affect their fitness and distribution causing rapid species declines, sometimes even before they had been discovered. Despite the high goals set by conservationists to protect native plants from further degradation and extinction, the initiatives for the conservation of threatened species in Europe are scattered and have not yielded the desired results. The main aim of this Action is to improve plant conservation in Europe through the establishment of a network of scientists and other stakeholders who deal with different aspects of plant conservation, from plant taxonomy, ecology, conservation genetics, conservation physiology and reproductive biology to protected area's managers, not forgetting social scientists, who are crucial when dealing with the general public.peer-reviewe
    corecore