113 research outputs found

    Presence of Extensive <i>Wolbachia</i> Symbiont Insertions Discovered in the Genome of Its Host <i>Glossina morsitans morsitans</i>

    Get PDF
    Tsetse flies (Glossina spp.) are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including Glossina morsitans morsitans (Gmm), for which the Whole Genome Sequence (WGS) is now available, have established symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia). The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the presence of horizontal gene transfer (HGT) events in a laboratory colony of Gmm, has already been shown. We herein report on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol) associated with Gmm. By in silico and molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol) in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed multiple insertions located on the two sex chromosomes (X and Y), as well as on the supernumerary B-chromosomes. We compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts on the control of tsetse populations and trypanosomiasis

    Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected

    Get PDF
    Wolbachia are intracellular bacteria that manipulate the reproduction of their arthropod hosts in remarkable ways. They are predominantly transmitted vertically from mother to offspring but also occasionally horizontally between species. In doing so, they infect a huge range of arthropod species worldwide. Recently, a statistical analysis estimated the infection frequency of Wolbachia among arthropod hosts to be 66%. At the same time, the authors of this analysis highlighted some weaknesses of the underlying data and concluded that in order to improve the estimate, a larger number of individuals per species should be assayed and species be chosen more randomly. Here we apply the statistical approach to a more appropriate data set from a recent survey that tested both a broad range of species and a sufficient number of individuals per species. Indeed, we find a substantially different infection frequency: We now estimate the proportion of Wolbachia-infected species to be around 40% which is lower than the previous estimate but still points to a surprisingly high number of arthropods harboring the bacteria. Notwithstanding this difference, we confirm the previous result that, within a given species, typically most or only a few individuals are infected. Moreover, we extend our analysis to include several reproductive parasites other than Wolbachia that were also screened for in the aforementioned empirical survey. For these symbionts we find a large variation in estimated infection frequencies and corroborate the finding that Wolbachia are the most abundant endosymbionts among arthropod species

    Wolbachia pipientis associated with tephritid fruit fly pests: from basic research to applications

    Get PDF
    Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.Instituto de GenéticaFil: Mateos, Mariana. Texas A&M University. Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences; Estados UnidosFil: Martinez Montoya, Humberto. Universidad Autónoma de Tamaulipas. Unidad Académica Multidisciplinaria Reynosa Aztlan. Laboratorio de Genética y Genómica Comparativa; MéxicoFil: Lanzavecchia, Silvia Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Conte, Claudia Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Guillén, Karina. El Colegio de la Frontera Sur; MéxicoFil: Morán-Aceves, Brenda M. El Colegio de la Frontera Sur; MéxicoFil: Toledo, Jorge. El Colegio de la Frontera Sur; MéxicoFil: Liedo, Pablo. El Colegio de la Frontera Sur; MéxicoFil: Asimakis, Elias D. University of Patras. Department of Environmental Engineering; GreciaFil: Doudoumis, Vangelis. University of Patras. Department of Environmental Engineering; GreciaFil: Kyritsis, Georgios A. University of Thessaly. Department of Agriculture Crop Production and Rural Environment. Laboratory of Entomology and Agricultural Zoology; GreciaFil: Papadopoulos, Nikos T. University of Thessaly. Department of Agriculture Crop Production and Rural Environment. Laboratory of Entomology and Agricultural Zoology; GreciaFil: Augustinos, Antonios A. Hellenic Agricultural Organization. Institute of Industrial and Forage Crops. Department of Plant Protection; GreciaFil: Segura, Diego Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética. Laboratorio de Genética de Insectos de Importancia Económica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tsiamis, George. University of Patras. Department of Environmental Engineering; Greci

    Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled?

    Get PDF
    Aphids are a serious threat to agriculture, despite being a rather small group of insects. The about 4,000 species worldwide engage in highly interesting and complex relationships with their microbial fauna. One of the key symbionts in arthropods is Wolbachia, an α-Proteobacterium implicated in many important biological processes and believed to be a potential tool for biological control. Aphids were thought not to harbour Wolbachia; however, current data suggest that its presence in aphids has been missed, probably due to the low titre of the infection and/or to the high divergence of the Wolbachia strains of aphids. The goal of the present study is to map the Wolbachia infection status of natural aphids populations, along with the characterization of the detected Wolbachia strains. Out of 425 samples from Spain, Portugal, Greece, Israel and Iran, 37 were found to be infected. Our results, based mainly on 16S rRNA gene sequencing, indicate the presence of two new Wolbachia supergroups prevailing in aphids, along with some strains belonging either to supergroup B or to supergroup A

    Wolbachia Symbiont Infections Induce Strong Cytoplasmic Incompatibility in the Tsetse Fly Glossina morsitans

    Get PDF
    Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (GmmApo) females when mated with Wolbachia-infected (GmmWt) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used successfully as a gene driver. This lays the foundation for new disease control methods including a population replacement approach with parasite resistant flies. Alternatively, the availability of males that are reproductively incompatible with natural populations can enhance the efficacy of the ongoing sterile insect technique (SIT) applications by eliminating the need for chemical irradiation

    Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies : Spiroplasma is present in both laboratory and natural populations

    Get PDF
    Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the “Wigglesworthia-Sodalis-Wolbachia dogma” operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipe

    Paul Baldassera et le mythe d'Hermès

    No full text
    Doudoumis Anélie. Paul Baldassera et le mythe d'Hermès. In: Cahiers du Centre d'Etudes Chypriotes. Volume 29, 1999. pp. 167-184
    corecore