59 research outputs found

    Entropy of random coverings and 4D quantum gravity

    Full text link
    We discuss the counting of minimal geodesic ball coverings of nn-dimensional riemannian manifolds of bounded geometry, fixed Euler characteristic and Reidemeister torsion in a given representation of the fundamental group. This counting bears relevance to the analysis of the continuum limit of discrete models of quantum gravity. We establish the conditions under which the number of coverings grows exponentially with the volume, thus allowing for the search of a continuum limit of the corresponding discretized models. The resulting entropy estimates depend on representations of the fundamental group of the manifold through the corresponding Reidemeister torsion. We discuss the sum over inequivalent representations both in the two-dimensional and in the four-dimensional case. Explicit entropy functions as well as significant bounds on the associated critical exponents are obtained in both cases.Comment: 54 pages, latex, no figure

    Characterization of a c-Rel inhibitor that mediates anticancer properties in hematologic malignancies by blocking NF-κB-controlled oxidative stress responses

    Get PDF
    NF-\u3baB plays a variety of roles in oncogenesis and immunity that may be beneficial for therapeutic targeting, but strategies to selectively inhibit NF-\u3baB to exert antitumor activity have been elusive. Here, we describe IT-901, a bioactive naphthalenethiobarbiturate derivative that potently inhibits the NF-\u3baB subunit c-Rel. IT-901 suppressed graft-versus-host disease while preserving graft-versus-lymphoma activity during allogeneic transplantation. Further preclinical assessment of IT-901 for the treatment of human B-cell lymphoma revealed antitumor properties in vitro and in vivo without restriction to NF-\u3baB-dependent lymphoma. This nondiscriminatory, antilymphoma effect was attributed to modulation of the redox homeostasis in lymphoma cells resulting in oxidative stress. Moreover, NF-\u3baB inhibition by IT-901 resulted in reduced stimulation of the oxidative stress response gene heme oxygenase-1, and we demonstrated that NF-\u3baB inhibition exacerbated oxidative stress induction to inhibit growth of lymphoma cells. Notably, IT-901 did not elicit increased levels of reactive oxygen species in normal leukocytes, illustrating its cancer selective properties. Taken together, our results provide mechanistic insight and preclinical proof of concept for IT-901 as a novel therapeutic agent to treat human lymphoid tumors and ameliorate graft-versus-host disease

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    Evaluation of Two Internalizing Carcinoembryonic Antigen Reporter Genes for Molecular Imaging

    Get PDF
    PurposeThe objective of this article is to develop internalizing positron emission tomography (PET) reporter genes for tracking genetically modified T cells in vivo.ProceduresThe transmembrane and cytoplasmic domains of the human transferrin receptor (TfR) and CD5 were each fused to the carcinoembryonic (CEA) minigene N-A3 and expressed in Jurkat T cells. Internalization was evaluated by confocal microscopy or by intracellular uptake of ¹²⁵I-labeled anti-CEA scFv-Fc. Reporter gene-transfected Jurkat xenografts in mice were analyzed by immunohistochemistry (IHC) and imaged by PET using ¹²⁴I- or ⁶⁴Cu-scFv-Fc as tracers.ResultsSurface expression of TR(1-99)-NA3 was lower than that of NA3-CD5. Both reporter genes were internalized following binding of the anti-CEA antibody fragment. IHC of tumors showed strong staining of NA3-CD5, whereas TR(1-99)-NA3 stained weakly. Specific targeting of TR(1-99)-NA3 or NA3-CD5 was shown by PET in xenografted mice.ConclusionsThe in vivo imaging studies suggest a potential application of the internalizing form of CEA (N-A3) as a PET reporter gene

    eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with limited treatment options. Although metabolic reprogramming is a hallmark of many cancers, including PDA, previous attempts to target metabolic changes therapeutically have been stymied by drug toxicity and tumour cell plasticity. Here, we show that PDA cells engage an eIF4F-dependent translation program that supports redox and central carbon metabolism. Inhibition of the eIF4F subunit, eIF4A, using the synthetic rocaglate CR-1-31-B (CR-31) reduced the viability of PDA organoids relative to their normal counterparts. In vivo, CR-31 suppresses tumour growth and extends survival of genetically-engineered murine models of PDA. Surprisingly, inhibition of eIF4A also induces glutamine reductive carboxylation. As a consequence, combined targeting of eIF4A and glutaminase activity more effectively inhibits PDA cell growth both in vitro and in vivo. Overall, our work demonstrates the importance of eIF4A in translational control of pancreatic tumour metabolism and as a therapeutic target against PDA

    The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI

    Get PDF
    corecore