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Abstract Preclinical imaging with SPECT combined with
CT or MRI is used more and more frequently and has proven
to be very useful in translational research. In this article, an
overview of current preclinical research applications and
trends of SPECTcombinedwith CTorMRI, mainly in tumour
imaging and neuroscience imaging, is given and the advan-
tages and disadvantages of the different approaches are de-
scribed. Today SPECT and CT systems are often integrated
into a single device (commonly called a SPECT/CT system),
whereas at present combined SPECT and MRI is almost
always carried out with separate systems and fiducial markers
to combine the separately acquired images. While preclinical
SPECT/CT is most widely applied in oncology research,
SPECT combined with MRI (SPECT/MRI when integrated
in one system) offers the potential for both neuroscience
applications and oncological applications. Today CT and

MRI are still mainly used to localize radiotracer binding and
to improve SPECT quantification, although both CTand MRI
have additional potential. Future technology developments
may include fast sequential or simultaneous acquisition of
(dynamic) multimodality data, spectroscopy, fMRI along with
high-resolution anatomic MRI, advanced CT procedures, and
combinations of more than two modalities such as combina-
tions of SPECT, PET, MRI and CT all together. This will all
strongly depend on new technologies. With further advances
in biology and chemistry for imaging molecular targets and
(patho)physiological processes in vivo, the introduction of
new imaging procedures and promising new radiopharmaceu-
ticals in clinical practice may be accelerated.

Introduction

Over the past decade the use of PET, SPECT, CT and MRI in
preclinical research has greatly increased due to technological
advances that have resulted in significant improvements in
spatial and temporal resolution as well as sensitivity [1–5].
These noninvasive imaging methods enable imaging of
(patho)physiological and molecular processes over time
in vivo, obviating the need for killing animals for each time-
point being studied [6–8]. Each of these imaging modalities
has unique qualities, in terms of their spatial and temporal
resolution and their ability to measure morphology and/or
function; the appropriate technique should be selected accord-
ing to the research question. PET and SPECT allow detection
of radiopharmaceuticals at nano- to picomolar concentrations
in vivo, and have proven to be excellent tools in the transla-
tional evaluation of radiotracers. CT and MRI provide a high
degree of spatial resolution that is well suited to anatomical
imaging and tissue phenotyping, including volumetry, and can
provide information regarding tissue physiology [9].
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Due to their sensitive detection capabilities, PET and
SPECT both have preeminent ability to monitor and quantify
dynamic processes at a molecular level in vivo. Unique
SPECT capabilities include: the ability to image ligands such
as peptides and antibodies relatively easy with 99mTc, 111In or
iodine isotopes (123I, 125I), the ability to measure slow kinetic
processes due to the long half-life (compared to most PET
tracers) of some of the commonly used radionuclides, and the
ability to probe multiple molecular pathways simultaneously
by detecting radionuclides with different gamma energies
(multiisotope imaging). Multiisotope imaging has been
demonstrated both clinically [10–13] and preclinically
[14, 15]. Another advantage of SPECT over PET is that
no cyclotron and associated infrastructure and complex
logistics are required on site and that many tracers are
readily available in the form of kits.

While in clinical imaging higher spatial resolutions can be
obtained with PET than with SPECT, the opposite is clearly
true in preclinical imaging in small animals. Small imaging
volumes enable the use of high magnification apertures in
SPECT imaging (Fig. 1), increasing sensitivity and resolution
relative to their clinical counterparts [16–18]. Recently devel-
oped SPECT systems can be extended to high-resolution
imaging of high-energy photons emitted by PET tracers, even
simultaneously with (multiple) SPECT tracers [14]. Since
some SPECT systems also enable imaging of 125I-labelled
tracers (<35 keV), the gap between in vitro and in vivo studies
is closed. Finally, in SPECT imaging spatial resolution and
sensitivity can be adjusted by changing the size of the colli-
mator apertures.

On the other hand, the drawbacks of SPECT include its
lower sensitivity compared to PET, especially when high-
resolution SPECT is desired. Moreover, SPECT tracer mole-
cules may differ with regard to their biological properties from
their nonradioactive counterparts after introduction of a radio-
nuclide–chelator complex, which is not the case for several

PET tracers in which endogenous atoms (such as hydrogen,
carbon and oxygen) can be replaced by their radioactive
isotopes. In addition, the dynamic capabilities of SPECT,
although recently greatly improved, are often limited com-
pared to those of PET.

In current clinical practice combining images from different
tomographic modalities is common. Also in preclinical
research multimodality imaging strategies are useful, as
different modalities can provide highly complementary
information. Spatially registered images enable localiza-
tion, enhanced visualization and accurate quantification
of spread and uptake of radiolabelled molecules within
the anatomical context provided by CT or MRI. In
addition, functional information derived from advanced
CT and MRI techniques such as perfusion imaging can
be related to expression and function of specific mole-
cules as measured by PET or SPECT.

In this review we discuss recent applications and techno-
logical advances of preclinical SPECT in combination with
CT or MRI in the fields of oncology and neuroscience. Over-
views by others and Golestani et al. addressing preclinical
SPECT combined with MRI and CT in other research fields,
such as cardiovascular research, regenerative medicine and
inflammation, have recently been published [19–22]. The
space constraints of this article prevented coverage of every
aspect of this exciting field, but we aimed to provide a good
appreciation of the possibilities, and also the limitations and
remaining challenges.

Applications of SPECT combined with CT or MRI

Tumour imaging

Hanahan andWeinberg [23, 24] introduced the notion that the
tumour microenvironment plays a crucial role in the develop-
ment and behaviour of tumours, including receptiveness and
sensitivity to treatment. The resulting understanding that can-
cer is a complex disease with significant involvement of the
tumour stroma has led to the interest in imaging tumour cell
characteristics as well as noncancer cell components in vivo
[25, 26], especially with regard to molecular diagnostics and
drug development. Since it would be impossible to cover
every aspect of this rapidly developing field, we only address
some key aspects in tumour imaging and the roles that
SPECT, and SPECT combined with CT or MRI have been
playing in this field.

Imaging targets and probes

Tumours and tumour cells exhibit different characteristics
compared to normal tissue and cells; this is reflected in altered
physiology, tissue composition and expression of intra- and

Fig. 1 State-of-the-art whole-body SPECT bone images acquired for
60 min with 250 MBq 99mTc-HDP and with 0.25-mm resolution colli-
mators (image courtesy of Oleksandra Ivashchenko, TU-Delft/MIlabs)

Eur J Nucl Med Mol Imaging (2014) 41 (Suppl 1):S36–S49 S37



extracellular molecules [23, 24, 26–28]. All these aspects can
be used as imaging targets in relation to diagnostics, drug
development and treatment response assessment. SPECT
probes (or tracers) can be classified according to their
biodistribution and targeting characteristics, i.e. the
biodistribution of some radiopharmaceuticals is determined
by their chemical/physical properties, whereas that of other
tracers is determined by their specific interaction with a
target. For details the reader is referred to a review by
Müller and Schibli [29].

Tumours are known often to display an aberrant vascular
network and microcirculation, which in turn underlies features
such as interstitial hypertension, hypoxia and acidosis, char-
acteristics that contribute to malignant phenotypes and resis-
tance to various treatments [30]. Within this environment,
tumour cells can also display altered energy metabolism, as
reflected in, for example, increased glucose uptake and shifted
balances in metabolic products. At the preclinical level, a
variety of SPECT tracers are under evaluation for use as
markers for (neo)angiogenesis [31–33], hypoxia [34–37], ac-
idosis [38–40], metabolic activity [41] and proteolytic activity
[42, 43]. Moreover, MRI and to a lesser extend CT offer
options for interrogating tumour physiological characteristics,
either through the use of specific probes or the use of sophis-
ticatedMRI techniques, as recently reviewed by Bernsen et al.
[9]. Besides metabolic tracers, much effort has been put into
the development and validation of SPECT probes specific for
tumour target molecules such as antigens, receptors or other
molecules also overexpressed in tumour tissue. The use of
peptides interacting with receptors [44], antibodies and anti-
body fragments targeting their epitopes [45], vitamin-based
radiopharmaceuticals [28] and nucleoside analogues [46],
significantly increases the possibilities for tumour detection,
localization and staging.

Specific points of interest in translational preclinical imag-
ing studies include efforts directed at improved tumour spec-
ificity [47], tumour uptake/retention [48] and minimized phar-
macological effects [49, 50] of imaging probes. In most pre-
clinical studies involving the use of SPECT combined with
CT or MRI to date, the CT or MRI components have been
mostly used to provide anatomical reference andmore recently
also for attenuation correction [51]. However, CT and MRI
offer more than anatomical information, and some examples
of the use of more sophisticated CT and MRI techniques are
discussed and provided in the technology sections below.

Biodistribution studies/dosimetry/response assessment

In drug development, biodistribution and pharmacokinetic
properties of a candidate drug or therapeutic agent are crucial
for their therapeutic potential and safety in patients. After
binding of a suitable radionuclide to the molecule or particle
of interest, preclinical SPECT imaging provides a valuable

noninvasive tool to study candidate drugs. Especially in de-
velopment of targeted treatment strategies with radiolabelled
molecules such as peptides, antibodies and vitamin-based
analogues, SPECT imaging combined with CT or MRI has
been widely used [45, 52–56]. Next to in vivo evaluation of
such molecules, SPECT combined with CT or MRI is also
being applied in the preclinical evaluation of (nano)particles
for treatment and/or diagnosis of cancer. Various studies
have investigated the biodistribution and therapeutic poten-
tial of, for example, liposomes [57–61], radiolabelled
superparamagnetic iron oxide nanoparticles and 166Ho mi-
crospheres (166HoAcAcMS), using multimodality imaging
approaches with SPECT/CT and SPECT/MRI [62, 63]. The
combined imaging data allow accurate assessment of
biodistribution and retention as well as dosimetry calculations.

Many of the imaging biomarkers addressed in the previous
section are also being evaluated as markers to monitor
response to treatment. Elimination of tumour cells might
be accompanied by loss of tracer uptake directed at
tumour-associated antigens or decreased metabolic activity,
whereas changes in vascular properties and tissue hypoxia
may be expected after antiangiogenic therapies, allowing
these markers to be used for response assessment. While
such an approach may appear fairly straightforward, some
limitations and pitfalls need to be taken into account. Loss
of tumour-associated antigen expression may also be a
result of changed tumour physiology not related to tumour
cell death [64]. Another process of interest as an imaging
biomarker for response is apoptosis [65, 66]. Expectations
were raised that visualization and quantification of apopto-
sis, as a more specific and relevant marker of cell death,
may provide better specificity for assessing actual tumour
cell elimination following treatment. Apoptosis imaging
using a tracer specific for annexin could reveal early
tumour cell death after chemotherapy [65], but its value
as a robust marker for treatment response still needs to be
established.

For the assessment of potential treatment efficacy, Bol et al.
recently reported on the added value of dual modality imaging
using SPECT and MRI [67]. In a rat model of neuroendocrine
pancreatic tumour, radiolabelled peptide uptake was assessed
in conjunction with measurement of tumour perfusion using
DCE-MRI. A substantial correlation between tumour uptake
of 111In-DTPA-octreotide and tumour perfusion parameters
was observed (Fig. 2). It was shown that even in tumour areas
with high receptor expression no peptide uptake occurred
when perfusion was low, indicating that combined SPECT
and MRI may be useful in treatment planning and/or response
prediction in patients treated with PRRT.

Imaging of cell trafficking has also been an area of interest
in which SPECT in combination with either CT or MRI has
been employed, an approach that has already been part of
clinical routine for several decades for identifying infection or
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inflammation sites by leucocyte scintigraphy [68]. Recently,
the interest in in vivo cell tracking has received a tremendous
boost from the realization that knowledge about the in vivo
fate of infused cells is crucial to the development of safe and
effective cell-based therapeutic strategies, including stem cell
therapy [69, 70]. SPECT has largely been used to investigate
the short-term fate of transplanted cells labelled with radio-
tracers such as 111In-oxine, 99mTc-hexamethylpropylene
amine oxine (HMPAO) and 111In-tropolone as intracellular
labels [71]. However, due to the lack of anatomical informa-
tion and the limited life-time of the radionuclides, preventing
longitudinal follow up, other imaging techniques such asMRI
have been widely used as well [72]. Since MRI also has some
specific limitations for in vivo cell tracking such as low
sensitivity and specificity, and challenges in quantification of
the MRI probe, alternative approaches have been sought, with
specific interest in reporter gene technology [70]. For SPECT
the sodium iodide symporter gene (NIS) and the herpes sim-
plex virus type 1 thymidine kinase gene (HSV1-tk) are so far
the most commonly used reporter genes in combination with
radioactive substrates [73, 74]. Reporter gene technology with
these and other reporter genes, e.g. norepinephrine transporter
and the somatostatin receptor, is being used not only in in vivo
cell tracking applications for cell-based therapy [75, 76], but
also to monitor metastatic spread of tumour cells [77–79], as
well as gene delivery and expression of genes in targeted gene
therapy approaches [80, 81].

Finally, in medical research, the successful choice of a
target molecule that is a key disease biomarker has the poten-
tial to lead to the development not only of a molecular imaging
probe, but also of a therapeutic agent to inhibit the disease
process. Examples include peptides [53, 82, 83], antibodies or
fragments thereof [84–87], and nanoparticles [26, 88], similar
compounds or particles that can be labelled with radionuclides
for either imaging or therapy. Receptor targeting with small
radiolabelled peptides for receptor-targeted tumour imaging
(PET and SPECT) as well as for radionuclide therapy [89]
provide good examples of such theranostic potential in

nuclear oncology and have paved the way for further devel-
opments in this field.

Neuroscience

Preclinical SPECT studies in small laboratory animal models
of neurodegenerative diseases

Parkinson’s disease (PD) is a neurodegenerative disease char-
acterized by loss of neurons producing dopamine (DA), and
consequently loss of the DA transporter (DAT) [90–95]. Pre-
clinical SPECT studies initially focused on the feasibility of
detecting striatal DAT binding in small laboratory animals per
se [96, 97]. In the past decade, pinhole SPECT studies have
shown the possibility of detecting loss of striatal DAT binding
in rodent models of PD using [123I]FP-CIT and [123I]β-CIT as
radiotracers [98, 99]. Initially, single-pinhole SPECT systems
were used to image DAT [91, 100], and the SPECT images
were coaligned with MR images (or templates) acquired on
clinical MRI scanners (using dedicated coils), with or without
the use of external markers [99, 101, 102]. Another recent
study, however, used a preclinical systemwith high-resolution
parallel-hole collimators (X-SPECT system) to evaluate DAT
loss (using [123I]altropane as a radiotracer) in a rat model of
PD, and the SPECT images were registered with CT images
[103]. Another DAT ([123I]FP-CIT) SPECT study in a mouse
model of PD used a double-headed gamma camera equipped
with a multipinhole aperture. The SPECT images were not
coaligned with CT or MR images [104, 105]. Finally, MRI is
an important tool in the field of neuroimaging. In this
regard, it is of interest that Lee et al. proposed an image
registration algorithm which can be used to register indi-
vidual DAT SPECT ([99mTc]TRODAT was used as a
radiotracer on a NanoSPECT/CT system) and brain MR
images (acquired on a 3-T system) in rodent models of
PD without using external markers [106].

Neurodegenerative diseases like multiple system atrophy,
progressive supranuclear palsy and Huntington’s disease, are

Fig. 2 Multimodality imaging of tumour uptake of targeted radiolabelled
peptide and tumour perfusion. Rats bearing a syngeneic, somatostatin
receptor overexpressing, neuroendocrine pancreatic tumour, were imaged
by SPECT/CT and MRI to study tumour uptake of a 111In-labelled
somatostatin analogue ([111In-DTPA]octreotide) and tumour perfusion
by DCE-MRI respectively. Left Tumour perfusion depicted by the
AUC value over the first 60 s as assessed by DCE-MRI; centre

tumour uptake of radiolabelled [111In-DTPA]octreotide of the same
tumour section as imaged by MRI; right colour-coded overlay of the
MR image and the SPECT image with MRI values depicted in red
and SPECT values depicted in green. For correct image registration,
MRI data were resampled to match the lower resolution of the
SPECT/CT images (image courtesy of Joost Haeck and Karin Bol,
Erasmus MC)
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characterized by loss of striatal DA D2 receptors [92]. A study
published in 2002 demonstrated the feasibility of pinhole
SPECT for measuring striatal DA D2/3 receptor binding in
the mouse brain in vivo [107]. [123I]IBF was used to assess
striatal D2/3 receptor binding and SPECT images were not
registered with CT or MR images. Not long afterwards, an-
other study in rats confirmed the feasibility of assessing DA
D2/3 receptor binding in- vivo, using [

123I]IBZM as radiotracer
and a dedicated small animal SPECT system [108]. In that
study, SPECT images were not registered with CT or MR
images, but a region of interest template was constructed and
used to evaluate receptor binding [108].

Scherfler et al. showed the ability of single-pinhole SPECT
to detect loss of striatal DA D2/3 receptors in a rat model of
Huntington’s disease [109]. In that study, the [123I]IBZM
SPECT images were registered on a MRI template. Impor-
tantly, in vivo [123I]IBZM binding was highly correlated with
the loss of medium-sized spiny neurons that express DA D2

receptors demonstrated ex vivo [110].
Alzheimer’s disease (AD) is the most common dementia in

humans, and is characterized by the deposition of β-amyloid
plaques and neurofibrillary tangles. PET tracers have been
developed successfully to image this neuropathology [111].
The deposition of amyloid has also been evaluated in micro-
PET studies in animal models of AD [112, 113]. SPECT
tracers have also been developed for labelling of amyloid
plaques [112]. Although [123I]IMPY shows high affinity for
amyloid in vitro and amyloid plaques in post-mortem brain
tissue of AD patients and animal models of AD, the specific to
nonspecific binding ratios are too low to be of value for
studies in animal models of AD [114, 115].

Preclinical SPECT studies in small laboratory animals
relevant to studies on psychosis or addiction

A consistent finding of imaging studies in drug addiction is loss
of striatal DA D2/3 receptors. An increase in D2 receptor
expression may therefore be beneficial in its treatment [116].
Interestingly, some drugs may induce an increase in D2/3 re-
ceptors [117–119], which has been supported by SPECT im-
aging in rats [117]. In the latter study an ultrahigh-resolution
pinhole SPECT system was used (U-SPECT-II), but SPECT
images were not registered with CT or MR images. Due to the
high spatial as well as temporal resolution of this system,
changes in DAToccupancy by cocaine over time can be studied
in the mouse in vivo [120]. Alterations in the expression of DA
D2/3 receptors have been reported in schizophrenia. In a recent
study, in which the SPECT images were registered with CT
images (X-SPECT/CT system), decreases in DA D2/3 receptor
availability in the striatum and midbrain have been shown in a
rat model of schizophrenia using [123I]epidepride as radiotracer
[121]. DA D2/3 receptor imaging can be used to evaluate DA
release [122]. Increased DA release has been reported in

schizophrenia, whereas DA release may be reduced in cocaine
dependency [123, 124]. Interestingly, recent pinhole SPECT
studies in mice and rats have also shown the ability to measure
DA release [125, 126]. In both studies, SPECT images were not
registered with CT or MR images.

Preclinical SPECT studies focused on brain perfusion

Brain perfusion studies may be of relevance for the study of,
for example, the aetiology of stroke. Using a multipinhole
SPECT system (NanoSPECT), the kinetics of the perfusion
tracers [99mTc]HMPAO and [99mTc]ECD were compared di-
rectly in control mice. SPECT images were registered on a
MRI template [127]. It was shown that [99mTc]ECD washout
was much faster than that of [99mTc]HMPAO. In another
study, [123I]iodoamphetamine was used to assess hypoperfu-
sion in infarcted brain areas in mice [128]. A single-pinhole
collimator systemwas used, and CTandMRI images acquired
on other systems were used for the alignment of the SPECT
images. Finally, Ceulemans et al. performed brain perfusion
SPECT studies ([99mTc]HMPAO, 1-mm pinhole collimator
positioned on a dual-head gamma camera, coregistered on
individual CT images) to quantify the infarct size in rats [129].

Deep brain stimulation (DBS) is commonly used in the
treatment of PD, but has recently also been used in the
treatment of other neuropsychiatric disorders [130]. Interest-
ingly, Wyckhuys et al. studied the effects of DBS on brain
perfusion in rats [131]. In all rats, they acquired individual
brain perfusion studies with SPECT (U-SPECT-II) after DBS
(stimulator on and off), micro-CT scans and, after the animals
were killed and the electrodes removed, MRI scans on a
clinical MRI scanner using a dedicated rat brain oil [131].
After registration of the images and analysis of each voxel,
hypoperfusion induced by DBS could be located accurately in
small brain areas (Fig. 3). This approach highlights the poten-
tial of multimodality imaging to evaluate and locate the effects
of interventions/treatments in small brain areas of rodents.

Preclinical SPECT studies focused on neurooncology

Micro-SPECT studies have also been performed successfully
in the field of neurooncology. For example, Yang et al. recent-
ly showed the feasibility of using [99mTc]DTPA to study the
integrity of the blood–brain barrier and tumour activity in
glioma-bearing rats [132]. A preclinical pinhole SPECT/CT
system (FLEX Triumph) was used which offers the ability to
coalign the SPECT and CT images [132]. Angiogenesis is
essential for tumour growth. Furthermore, malignant cells can
release vascular endothelial growth factors (VEGFs) which
are important promoters and regulators of angiogenesis.
SPECT studies showed the possibility of imaging VEGF
receptors in rats. [99mTc]HYNIC-VEGF uptake was increased
in glioma-bearing rats pretreated with a VEGR receptor
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tyrosine kinase inhibitor [64]. In that study, SPECT images
were acquired on a dedicated multiple-pinhole SPECT system
(NanoSPECT), but the SPECT images were not registered
with CT or MR images. In addition, Huang et al. evaluated a
188Re-labelled liposome as a diagnostic and therapeutic agent
in glioma-bearing rats [60], using a preclinical multiple-
pinhole SPECT/CT system (NanoSPECT/CT). Importantly,
uptake in the brain tumour could be visualized, and specific
binding was confirmed histopathologically [121]. Another
study in glioma-bearing rats evaluated new treatment strate-
gies for glioma, and imaged 99mTc-labelled nanoparticles
using a clinical SPECT system [133]. Finally, SPECT/CT
(parallel hole SPECT system) studies were performed to ex-
amine successfully glioblastoma xenografts that were located
subcutaneously in mice using, for example, 125I-labelled
monoclonal antibodies against chemokine receptor 4 [134].

Technology of SPECT combined with CT or MRI

Combined imaging approaches/systems, introduction

In order to fully benefit from multimodality imaging, accurate
spatial registration of the images is crucial. Below we address
ways to adequately combine SPECTwith CT or MRI.

Side-by-side systems

In contrast to clinical imaging of patients, small animals can
be transported – including the bed – between imaging devices
with gentle fixation with tape preventing movement of the

animal on the bed. This requires beds that can be easily, rigidly
and reproducibly mounted on different scanners (Fig. 4). Mul-
timodal fiducial markers attached to the animal (or bed) or a
premeasured transformation matrix can be used for spatial
coregistration [135, 136]. Such side-by-side use of separate
scanners offers flexibility in adding and/or replacing indi-
vidual modalities while both systems can be used in paral-
lel facilitating higher through-put. However, maintaining
anaesthesia may be a challenge during transport, especially
when the machines are far apart.

In-line systems

A second approach to imaging with SPECT in combination
with CTorMRI is to mount the separate modalities in line (i.e.
back-to-back) on a single gantry (Fig. 5).When the bedmoves
in the axial direction, images of the different modalities can be
acquired shortly after each other.With this approach it is easier
to continuously provide anaesthesia and no animal handling
between scans is required. However, simultaneous use of the
separate modalities is not possible, limiting flexibility and
through-put. Furthermore, close proximity of the SPECT and
MRI systems limits theMRI field strengths that can be applied
potentially resulting in impractically long MRI acquisition
times. MRI-compliant SPECT hardware will most likely tack-
le these problems in the future.

Integrated systems

Figure 6 shows an example of a system where the SPECTand
CT are mounted on the same gantry. An advantage is that fast

Fig. 3 Coronal, sagittal and
transverse anatomical T1-
weighted MRI scans coregistered
with coloured subtraction SPECT
data illustrating the changes in
regional cerebral blood flow
induced by deep brain stimulation
(DBS). The white arrows indicate
a DBS electrode artefact in the
hippocampus. The corresponding
sections, modified from the rat
brain atlas of Paxinos and Watson
[183] are shown on the right
(CA1-CA3; DG dentate gyrus,
Sub subiculum, Ent entorhinal
cortex). The different
hippocampal structures are
coloured and the position of the
DBS electrode is indicated
(courtesy Tine Wyckhuys [131])

Eur J Nucl Med Mol Imaging (2014) 41 (Suppl 1):S36–S49 S41



sequential SPECT and CT acquisition can be performed with
minimal or even without shifting of the bed. One of the
drawbacks of this approach is space constraints, since the
number and/or size of detectors that can be used for each
modality is limited, preventing e.g. stationary and full angular
SPECT approaches.

SPECT combined with CT

Implementation of multipinhole collimators with high pinhole
magnification factors in dedicated small-animal SPECT sys-
tems has helped overcome the limitation of poor sensitivity
and spatial resolution. Efforts have been made to keep the
heavy SPECT detectors stationary [16, 137–139] in order to
obviate the need for regular geometric parameter calibration
and to enable fast dynamic imaging [3, 137], while sensitivity

and resolution in organ and tumour imaging have been
increased [139–141].

CT systems currently used in preclinical SPECT/CT usu-
ally contain a variable energy X-ray tube. Tube voltage and
current are in the range of 20 – 80 kVp and 0.2 – 1 mA,
respectively. Tube current typically decreases with decreasing
focal spot size. Reconstructed resolutions of well below
100 μm are achieved using microfocus X-ray tubes with focal
spot sizes down to a few micrometres.

SPECT combined with MRI

Exposure to ionizing radiation from CT imaging may influ-
ence study outcomes [142–146]. Furthermore, image contrast
of CT is often suboptimal for soft tissues such as brain and
tumours. These two limitations have been strong incentives

Fig. 4 Example of the principle of a transferable bed system. Left
Schematic drawing of an animal bed with tailored interfaces for mounting
into compatible cradles in SPECT and MRI scanners. Right Step-by-step
photo representation of the transfer from a SPECT scanner to a MRI

scanner: a at the end of SPECT/CT acquisition; b the animal bed is
unplugged; c, d the animal and bed are moved towards the MRI
scanner ; e, f the bed is docked and positioned inside the magnet
followed by MRI acquisition (image courtesy of Philippe Choquet)

Fig. 5 Combined modality approaches. a Drawing of a SPECT/CT
system in which the SPECT part can also image 511 keV photons to
perform simultaneous SPECT/PET (from M.C. Goorden et al., JNM
2013). b, c Cross-sectional views of (b) a proposed SPECT/MRI system

and (c) a SPECT/CT system. For b and c the SPECT system is placed in
front while the MRI or CT system is placed at the back of the
scanner (b, c courtesy of Mediso Medical Imaging Systems)
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for the current efforts to integrate SPECT and MRI. A com-
bined SPECT/MRI platform was first proposed in 2007 by
Breton et al. who used a single pinhole SPECT system adja-
cent to a 0.1-T magnet [147]. The low MRI field strength
made this solution suboptimal for use in routine preclinical
research. However, since then systems combining SPECTand
MRI have been introduced with both higher SPECT sensitiv-
ity and resolution and higher MRI field strengths. One solu-
tion involves the use of a robotic rotation/translation stage that
automatically transfers the animal between the separately
spaced MRI system and other modalities (Fig. 7). Using such
an approach the MRI unit is still positioned in line with the
other modalities, while avoiding the effects of fringe magnetic
fields. Similar to hybrid SPECT/CT scanners, recent efforts
also include an in-line hybrid SPECT/MRI system, in which
the SPECT subsystem is placed in front of the MRI system
(Fig. 5b). In attempts to perform simultaneous SPECT and
MR imaging, SPECT inserts for MRI systems have been
developed [148, 149]. They have a stationary detector set-up

and MRI-compatible collimators and detectors, although to-
day these systems are still in early stages of development.

Quantification in animal SPECT combined with CT or MRI

Preclinical SPECT systems are mostly based on the use of
pinholes that magnify projections of the radionuclide distri-
bution on detectors. For proper quantification of radioactivity,
image-degrading factors such as distance-dependent collima-
tor response and sensitivity, as well as photon attenuation and
scatter, need to be taken into account.

Distance-dependent collimator response and sensitivity

Tomaximize spatial resolution in SPECT, thereby minimizing
partial volume effects, and to reduce quantification errors,
distance-dependent collimator resolution and sensitivity need
to be taken into account in image reconstruction (i.e. resolu-
tion recovery methods). In this context it is also important to
accurately calibrate the system’s geometrical parameters
[150–154]. Methods that also account for more complex
effects, such as detector and collimator imperfections include
measurements of the system’s response with a point source at
many discrete locations in the field of view of the camera
[155–157]. Such methods can also be combined with ad-
vanced interpolation schemes [158] and have enabled very
high spatial resolution.

Attenuation and scatter

Since the likelihood of scatter events in small animals is much
smaller than in humans, the effects of photon attenuation and
scatter in tissue are smaller than in clinical SPECT [159].
Simulation studies in mouse-sized phantoms have shown that
attenuation can degrade quantitation accuracy by up to −18 %
(99mTc or 111In) or −41 % (125I) [160]. Accounting for scatter
and attenuation is especially important for imaging tracers that
emit low gamma-ray energies such as 125I [161, 162]. Several
methods have been published for attenuation and scatter cor-
rection [161, 163–166]. First order attenuation correction
methods as proposed in 1978 by Chang [167] seem to be
sufficient for small-animal SPECT [165]. Attenuation correc-
tion maps can be derived from CT images [161], optical
images [165] and MR images [163].

Because of the low amount of scatter in small subjects,
simple energy-window-based corrections [168–170] are often
sufficient for 99mTc, 123I and 111In [161, 165, 166]. However,
in the case of multipeak spectra and multiradionuclide imag-
ing, it is important that many scatter windows are available, or
that data are acquired in list mode (i.e. that for each detected
photon its position, its energy and its detection time are
stored). Scatter in pinhole apertures is low [171], although in
multienergy and in multiradionuclide SPECT, scatter and

Fig. 6 Diagram of an integrated SPECT/CTsystem showing two SPECT
detectors, a CT detector and an X-ray tube, all rotating on the same gantry
(image courtesy of Siemens Healthcare)

Fig. 7 One of the commercial side-by-side solutions for integrating 1.5-T
or 3-T MRI with SPECT and other modalities. In this example a robotic
rotation/translation stage automatically transfers the animal between
the systems. In this set-up the MRI system is integrated in line with
the other modalities, while avoiding possible interference of the
fringe magnetic field of the MRI system with the other modalities
(image courtesy of MILabs B.V.)
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photon penetration in the collimator can be a significant issue,
e.g. with a combination of SPECT and PET tracers used on a
SPECT camera, although in such a case excellent quantitative
images have been recently obtained using a dedicated high-
energy (clustered-)pinhole collimator and window-based scat-
ter corrections [14].

Concluding remarks and future perspectives

Recent advances in small-animal SPECT/CT and SPECT/
MRI devices, radiochemistry, probe development, target
finding and suitable animal models have provided more
advanced and increased applications of these combined
imaging strategies.

In most preclinical SPECT imaging studies to date, CT or
MRI merely fulfil a supportive role to provide anatomical
reference and in some cases attenuation correction. In small
laboratory animals, acquisition of detailed anatomical infor-
mation, performance of dynamic scans or functional imaging
with CT has specific challenges compared to imaging in
humans. To reach diagnostic image quality high CT radiation
doses and/or large volumes of contrast agent are necessary.
These aspects are not compatible with longitudinal studies,
since they may severely affect the wellbeing of animals. New
developments in small-animal CT [172–177] and the use of
new contrast agents for CT should provide better image qual-
ity at lower radiation doses and/or with lower volumes of
contrast agent.

MRI offers detailed anatomical imaging of soft tissues
compatible with longitudinal studies. Separately spaced
SPECT and MRI systems can pose challenges with respect
to image registration, imaging times and anaesthesia times; the
effects of these issues can potentially influence study results.
On the other hand, physical integration of SPECT and MRI
technologies is hampered by various incompatibilities; the
components and working mechanisms of the separate modal-
ities currently degrade the other’s performance.

A major benefit of higher magnetic field strengths is that
more signal is provided which can be used to shorten acqui-
sition times, but higher magnetic field strengths do not always
guarantee higher image quality per se. Currently, most high-
field magnets are cooled with cryogenic liquids. One of the
main drivers towards small MRI systems is the development
of cryogen-free magnets or systems using helium gas instead
of liquid helium. This development could lead to significant
reductions in the size, site requirements and cost of high-field
MRI systems. Today, such helium gas-based commercialMRI
systems are limited to 3 T.

While not covered in detail in this review, an extremely
important aspect to consider during imaging is animal welfare.
Animal handling and especially anaesthesia is demanding to
the animal and can severely affect the outcome of imaging

studies [35, 178–180]. Also issues regarding radiation doses
will have to be taken into account [142, 143, 181, 182].

Taking these issues into account, further advances in tech-
nology and chemistry, for example the development of new
imaging procedures and promising new radiopharmaceuticals,
for imaging molecular targets as well as (patho)physiological
processes in vivo, the step from bench to bedside might
become more successful and shorter; e.g. accelerating the
introduction of new imaging procedures and promising new
radiopharmaceuticals into clinical practice.
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