150 research outputs found

    Powder diffraction methods for studies of borohydride-based energy storage materials

    Get PDF
    The world today is facing increasing energy demands and a simultaneous demand for cleaner and more environmentally friendly energy technologies. Hydrogen is recognized as a possible renewable energy carrier, but its large-scale utilization is mainly hampered by insufficient hydrogen storage capabilities. In this scenario, powder diffraction has a central position as the most informative and versatile technique available in materials science. This is illustrated in the present review by synthesis, physical, chemical and structural characterisation of novel boron based hydrides for hydrogen storage. Numerous novel BH4- based materials have been investigated during the past few years and this class of materials has a fascinating structural chemistry. The experimental methods presented can be applied to a variety of other material

    Melt in the Greenland EastGRIP ice core reveals Holocene warm events

    Get PDF
    We present a record of melt events obtained from the East Greenland Ice Core Project (EastGRIP) ice core in central northeastern Greenland, covering the largest part of the Holocene. The data were acquired visually using an optical dark-field line scanner. We detect and describe melt layers and lenses, seen as bubble-free layers and lenses, throughout the ice above the bubble–clathrate transition. This transition is located at 1150 m depth in the EastGRIP ice core, corresponding to an age of 9720 years b2k. We define the brittle zone in the EastGRIP ice core as that from 650 to 950 m depth, where we count on average more than three core breaks per meter. We analyze melt layer thicknesses, correct for ice thinning, and account for missing layers due to core breaks. Our record of melt events shows a large, distinct peak around 1014 years b2k (986 CE) and a broad peak around 7000 years b2k, corresponding to the Holocene Climatic Optimum. In total, we can identify approximately 831 mm of melt (corrected for thinning) over the past 10 000 years. We find that the melt event from 986 CE is most likely a large rain event similar to that from 2012 CE, and that these two events are unprecedented throughout the Holocene. We also compare the most recent 2500 years to a tree ring composite and find an overlap between melt events and tree ring anomalies indicating warm summers. Considering the ice dynamics of the EastGRIP site resulting from the flow of the Northeast Greenland Ice Stream (NEGIS), we find that summer temperatures must have been at least 3 ± 0.6 ∘C warmer during the Early Holocene compared to today

    Cryoegg: development and field trials of a wireless subglacial probe for deep, fast-moving ice

    Get PDF
    nnovative technological solutions are required to access and observe subglacial hydrological systems beneath glaciers and ice sheets. Wireless sensing systems can be used to collect and return data without the risk of losing data from cable breakage, which is a major obstacle when studying fast flowing glaciers and other high-strain environments. However, the performance of wireless sensors in deep and fast-moving ice has yet to be evaluated formally. We report experimental results from Cryoegg: a spherical probe that can be deployed along an ice borehole and either remain fixed in place or potentially travel through the subglacial hydrological system. The probe makes measurements in-situ and sends them back to the surface via a wireless link. Cryoegg uses very high frequency (VHF) radio to transmit data through up to 1.3 km of cold ice to a surface receiving array. It measures temperature, pressure and electrical conductivity, returning all data in real time. This transmission uses Wireless M-Bus on 169 MHz; we present a simple “radio link budget” model for its performance in cold ice and confirm its validity experimentally. Power is supplied by an internal battery with sufficient capacity for two measurements per day for up to a year, although higher reporting rates are available at the expense of battery life. Field trials were conducted in 2019 at two locations in Greenland (the EastGRIP borehole and the RESPONDER project site on Sermeq Kujalleq/Store Glacier) and on the Rhone Glacier in Switzerland. Our results from the field demonstrate Cryoegg’s utility in studying englacial channels and moulins, including estimating moulin discharge through salt dilution gauging with the instrument deployed deep within the moulin. Future iterations of the radio system will allow Cryoegg to transmit through up to 2.5 km of ice

    Wideband measurements of ice sheet attenuation and basal scattering

    Get PDF
    Š2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.We are developing a multifirequency multistatic synthetic aperture radar (SAR) for determining polar ice sheet basal conditions. To obtain data for designing and optimizing radar performance, we performed field measurements with a network-analyzer-based system during the 2003 field season at the North Greenland Ice Core Project camp (75.1 N and 42.3 W). From the measurements, we determine the ice sheet complex transfer function over the frequency range from 110-500 MHz by deconvolving out the system transfer function. Over this frequency range, we observe an increase in total loss of 8 +/- 2.5 dB using a linear regression to the log-scale data. With the ice sheet transfer function and an ice extinction model, we estimate the return loss from the basal surface to be approximately 37 dB. These measurements have broad applicability to interpreting radar-sounding data, which are widely used in glaciological studies of the polar ice sheets. These data have also been used in the link budget for the design considerations of the multifirequency multistatic SAR system

    Major Cardiac Events in Patients and Relatives With Hereditary Hypertrophic Cardiomyopathy

    Get PDF
    BackgroundLittle evidence is available on the disease expression in relatives of index patients with hypertrophic cardiomyopathy (HCM). This information has important implications for family screening programs, genetic counseling, and management of affected families.ObjectivesThe purpose of this study was to investigate the disease expression and penetrance in relatives of index patients carrying pathogenic/likely pathogenic (P/LP) variants in recognized HCM genes.MethodsA total of 453 consecutive and unrelated HCM index patients underwent clinical and genetic investigations. A total of 903 relatives of genotype-positive index patients were invited for clinical investigations and genetic testing. Penetrance, disease expression, and incidence rates of major adverse cardiac events (MACEs) were investigated in individuals carrying P/LP variants.ResultsForty percent (183/453) of index patients carried a P/LP variant. Eighty-four percent (757/903) of all relatives of index patients with P/LP variants were available for the investigation, of whom 54% (407/757) carried a P/LP variant. The penetrance of HCM among relatives was 39% (160/407). Relatives with HCM and index patients were diagnosed at a similar age (43 Âą 18 years vs 46 Âą 15 years; P = 0.11). There were no differences in clinical characteristics or incidence rates of MACE during 8 years of follow-up.ConclusionsThe disease expression of HCM among index patients and affected relatives carrying P/LP variants in recognized disease genes was similar, with an equal risk of experiencing MACE. These findings provide evidence to support family screening and follow-up of genotype-positive HCM families to improve management and diminish the number of adverse disease complications among relatives

    Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics

    Get PDF
    This is the publisher's version, also available electronically from "http://onlinelibrary.wiley.com".[1] Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model is driven by data from an automatic weather station operated on the glacier during the summers of 2007 and 2008, and calibrated with independent measurements of ablation. Modeled melt varies over the deployment period by as much as 68% relative to the mean, with melt rates approximately 77% higher on the lower reaches of the glacier trunk than on the upper glacier. We compare melt variations during the summer season to estimates of surface velocity derived from global positioning system surveys. Near the front of the glacier, there is a significant correlation (on >95% levels) between variations in runoff (estimated from surface melt) and variations in velocity, with a 1 day delay in velocity relative to melt. Although the velocity changes are small compared to accelerations previously observed following some calving events, our findings suggest that the flow speed of Helheim Glacier is sensitive to changes in runoff. The response is most significant in the heavily crevassed, fast-moving region near the calving front. The delay in the peak of the cross-correlation function implies a transit time of 12–36 h for surface runoff to reach the bed

    Prototype wireless sensors for monitoring subsurface processes in snow and firn

    Get PDF
    The detection and monitoring of meltwater within firn presents a significant monitoring challenge. We explore the potential of small wireless sensors (ETracer+, ET+) to measure temperature, pressure, electrical conductivity and thus the presence or absence of meltwater within firn, through tests in the dry snow zone at the East Greenland Ice Core Project site. The tested sensor platforms are small, robust and low cost, and communicate data via a VHF radio link to surface receivers. The sensors were deployed in low-temperature firn at the centre and shear margins of an ice stream for 4 weeks, and a ‘bucket experiment’ was used to test the detection of water within otherwise dry firn. The tests showed the ET+ could log subsurface temperatures and transmit the recorded data through up to 150 m dry firn. Two VHF receivers were tested: an autonomous phase-sensitive radio-echo sounder (ApRES) and a WinRadio. The ApRES can combine high-resolution imaging of the firn layers (by radio-echo sounding) with in situ measurements from the sensors, to build up a high spatial and temporal resolution picture of the subsurface. These results indicate that wireless sensors have great potential for long-term monitoring of firn processes

    A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy

    Get PDF
    Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations

    Greenland and Canadian Arctic ice temperature profiles database

    Full text link
    Here, we present a compilation of 95 ice temperature profiles from 85 boreholes from the Greenland ice sheet and peripheral ice caps, as well as local ice caps in the Canadian Arctic. Profiles from only 31 boreholes (36 %) were previously available in open-access data repositories. The remaining 54 borehole profiles (64 %) are being made digitally available here for the first time. These newly available profiles, which are associated with pre-2010 boreholes, have been submitted by community members or digitized from published graphics and/or data tables. All 95 profiles are now made available in both absolute (meters) and normalized (0 to 1 ice thickness) depth scales and are accompanied by extensive metadata. These metadata include a transparent description of data provenance. The ice temperature profiles span 70 years, with the earliest profile being from 1950 at Camp VI, West Greenland. To highlight the value of this database in evaluating ice flow simulations, we compare the ice temperature profiles from the Greenland ice sheet with an ice flow simulation by the Parallel Ice Sheet Model (PISM). We find a cold bias in modeled near-surface ice temperatures within the ablation area, a warm bias in modeled basal ice temperatures at inland cold-bedded sites, and an apparent underestimation of deformational heating in high-strain settings. These biases provide process level insight on simulated ice temperatures
    • …
    corecore