21 research outputs found

    Identication of linear slow sausage waves in magnetic pores

    Get PDF
    The analysis of an 11-hour series of high resolution white light observations of a large pore in the sunspot group NOAA 7519, observed on 5 June 1993 with the Swedish Vacuum Solar Telescope at La Palma on Canary Islands, has been recently described by Dorotovič et al. (2002). Special attention was paid to the evolution of a filamentary region attached to the pore, to horizontal motions around the pore, and to small-scale morphological changes. One of the results, relevant to out work here, was the determination of temporal area evolution of the studied pore where the area itself showed a linear trend of decrease with time at an average rate of −0.23 Mm2h−1 during the entire observing period. Analysing the time series of the are of the pore, there is strong evidence that coupling between the solar interior and magnetic atmosphere can occur at various scales and that the referred decrease of the area may be connected with a decrease of the magnetic field strength according to the magnetic field-to-size relation. Periods of global acoustic, e.g. p-mode, driven waves are usually in the range of 5–10 minutes, and are favourite candidates for the coupling of interior oscillations with atmospheric dynamics. However, by assuming that magneto-acoustic gravity waves may be there too, and may act as drivers, the observed periodicities (frequencies) are expected to be much longer (smaller), falling well within the mMHz domain. In this work we determine typical periods of such range in the area evolution of the pore using wavelet analysis. The resulted periods are in the range of 20–70 minutes, suggesting that periodic elements of the temporal evolution of the area of this studied pore could be linked to, and considered as, observational evidence of linear low-frequency slow sausage (magneto-acoustic gravity) waves in magnetic pores. This would give us further evidence on the coupling of global solar oscillations to the overlaying magnetic atmosphere

    Photospheric observations of surface and body modes in solar magnetic pores

    Get PDF
    Over the past number of years, great strides have been made in identifying the various low-order magnetohydrodynamic wave modes observable in a number of magnetic structures found within the solar atmosphere. However, one aspect of these modes that has remained elusive, until now, is their designation as either surface or body modes. This property has significant implications for how these modes transfer energy from the waveguide to the surrounding plasma. Here, for the first time to our knowledge, we present conclusive, direct evidence of these wave characteristics in numerous pores that were observed to support sausage modes. As well as outlining methods to detect these modes in observations, we make estimates of the energies associated with each mode. We find surface modes more frequently in the data, as well as that surface modes appear to carry more energy than those displaying signatures of body modes. We find frequencies in the range of ~2–12 mHz, with body modes as high as 11 mHz, but we do not find surface modes above 10 mHz. It is expected that the techniques we have applied will help researchers search for surface and body signatures in other modes and in differing structures from those presented here

    Standing sausage waves in photospheric magnetic waveguides

    Get PDF
    By focusing on the oscillations of the cross-sectional area and the intensity of magnetic waveguides located in the lower solar atmosphere, we aim to detect and identify magnetohydrodynamic (MHD) sausage waves. Capturing several series of high-resolution images of pores and sunspots and employing wavelet analysis in conjunction with empirical mode decomposition (EMD) makes the MHD wave analysis possible. For this paper, two sunspots and one pore (with a light bridge) were chosen as representative examples of MHD waveguides in the lower solar atmosphere. The sunspots and pore display a range of periods from 4 to 65 minutes. The sunspots support longer periods than the pore - generally enabling a doubling or quadrupling of the maximum pore oscillatory period. All of these structures display area oscillations indicative of MHD sausage modes and in-phase behaviour between the area and intensity, presenting mounting evidence for the presence of the slow sausage mode within these waveguides. The presence of fast and slow MHD sausage waves has been detected in three different magnetic waveguides in the lower solar photosphere. Furthermore, these oscillations are potentially standing harmonics supported in the waveguides which are sandwiched vertically between the temperature minimum in the lower solar atmosphere and the transition region. Standing harmonic oscillations, by means of solar magneto-seismology, may allow insight into the sub-resolution structure of photospheric MHD waveguides

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Wave Damping Observed in Upwardly Propagating Sausage-mode Oscillations contained within a Magnetic Pore

    Get PDF
    We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period ~290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out of phase with one another, displaying phase angles of 6fdg12, 5fdg82, and 15fdg97 between the 4170 Å continuum–G-band, G-band–Na i D1, and Na i D1–Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ~0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the "slow" regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 W m−2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma

    Standing sausage waves in photospheric magnetic waveguides

    No full text
    Aims. By focusing on the oscillations of the cross-sectional area and the total intensity of magnetic waveguides located in the lower solar atmosphere, we aim to detect and identify magnetohydrodynamic (MHD) sausage waves. Methods. Capturing several high-resolution time series of mangetic waveguides and employing a wavelet analysis, in conjunction with empirical mode decomposition (EMD), makes the MHD wave analysis possible. For this paper, two sunspots and one pore (with a light bridge) were chosen as representative examples of MHD waveguides in the lower solar atmosphere. Results. The waveguides display a range of periods from 4 to 65 minutes. These structures display in-phase behaviour between the area and intensity, presenting mounting evidence for sausage modes within these waveguides. The detected periods point towards standing oscillations. Conclusions. The presence of fast and slow MHD sausage waves has been detected in three different magnetic waveguides in the solar photosphere. Furthermore, these oscillations are potentially standing harmonics supported in the waveguides which are sandwiched vertically between the temperature minimum in the lower solar atmosphere and the transition region. The relevance of standing harmonic oscillations is that their exploitation by means of solar magneto-seismology may allow insight into the sub-resolution structure of photospheric MHD waveguides

    Evolution and motions of small-scale photospheric structures near a large solar pore

    No full text
    The analysis of an 11-hour series of high resolution white light observations of a large pore in the sunspot group NOAA 7519, observed on 5 June 1993 at the áSwedish Vacuum Solar Telescope, La Palma, Canary Islands, is described. We used a total of 1782 frames, with average time interval of 22 s. Special attention was paid to the áevolution of a filamentary region attached to the pore, to horizontal motions around the pore, and to small-scale morphological changes. The filamentary region was observed to change its structure back and forth between penumbra-like filaments and elongated granules. A clockwise rotation of this region around the center of the pore was detected during the whole observing period. This rotation had angular velocities decreasing with time from 7.6° h-1 to 2.7° h-1. Motions inside the filamentary region and around the pore, including penetrations of photospheric granules into the pore, were studied in detail using local correlation and feature tracking algorithms. It was found that the observed filamentary region, although having some typical penumbral features, was different from a normal penumbra

    The heliosphere mass variations: 1996–2006

    No full text

    North and South Hemispheric Solar Activity for Cycles 21 – 23: Asymmetry and Conditional Volatility of Plage Region Areas

    No full text
    We study the dynamic evolution of the time series describing the plage regions areas observed daily at the Observatório Astronómico da Universidade de Coimbra, in each one of the solar hemispheres during solar cycles 21 – 23. The classical ARMA model has proven to be insufficient to describe the time variations seen in the data because of the strong conditional variability. We found that the data are well fitted by ARMA mixed with power-δ TGARCH error models. The power index δ is non-integer; this property has recently been introduced in the literature on time-series analyses and indicates the presence of strong volatility and long memory in the data series. We also detected dynamic asymmetry in the plage region areas observed in the two hemispheres when two different temporal models were obtained to fit them. The finding of a dynamic asymmetry is also supported by the dynamic evolution of the daily difference (north–south) time series, which is significantly different from white noise. This statistical modeling of time series, taking into account new and different characteristics of the solar activity, will be very useful in subsequent forecast developments
    corecore