67 research outputs found

    Propagation of coherent polarized light in turbid highly scattering medium

    Get PDF
    Within the framework of further development of unified Monte Carlo code for the needs of biomedical optics and biophotonics, we present an approach for modeling of coherent polarized light propagation in highly scattering turbid media, such as biological tissues. The temporal coherence of light, linear and circular polarization, interference, and the helicity flip of circularly polarized light due to reflection at the medium boundary and/ or backscattering events are taken into account. To achieve higher accuracy in the results and to speed up the modeling, the implementation of the code utilizes parallel computing on NVIDIA graphics processing units using Compute Unified Device Architecture. The results of the simulation of coherent linearly and circularly polarized light are presented in comparison with the results of known theoretical studies and the results of alternative modelings

    Impact of blood volume on the diffuse reflectance spectra of human skin measured in visible and NIR spectral ranges

    Get PDF
    We consider changes in the volume of blood and oxygen saturation caused by a pulse wave and their influence on the diffuse reflectance spectra in the visible/NIR spectral range. CUDA-based Monte-Carlo model was used for routine simulation of detector depth sensitivity (sampling volume) and skin spectra, and their variations associated with physiological changes in the human skin. The results presented in the form of animated graphs of sampling volume changes for scaling of the parameters of the main human skin layers related to the results of experimental measurements are of particular interest for pulse oximetry, photoplethysmography, Doppler flowmetry, reflectance spectroscopy

    Multiple quantum NMR of spin-carrying molecules in nanopores: high order corrections to the two-spin/two-quantum Hamiltonian

    Full text link
    This paper is devoted to the multiple-quantum (MQ) NMR spectroscopy in nanopores filled by a gas of spin-carrying molecules (s=1/2) in a strong external magnetic field. It turned out that the high symmetry of the spin system in nanopores yields a possibility to overcome the problem of the exponential growth of the Hilbert space dimension with an increase in the number of spins and to investigate MQ NMR dynamics in systems consisting of several hundred spins. We investigate the dependence of the MQ coherence intensities on their order (the profile of the MQ coherence intensities) for a spin system governed by the standard MQ NMR Hamiltonian (the nonsecular two-quantum/two-spin Hamiltonian) together with the second order correction of the average Hamiltonian theory. It is shown that the profile depends on the value of this correction and varies from the exponential to the logarithmic one.Comment: 7 pages, 3 figure

    Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography

    Get PDF
    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations

    Acousto-optic imaging using quantum memories in cryogenic rare earth ion doped crystals

    Get PDF
    The interaction of ultrasound and light in biological tissues results in a small amount of the scattered light being shifted relative to the carrier frequency (typically 1 part in 108). We have developed an inherently efficient and low noise quantum memory based technique to selectively absorb these ultrasound tagged photons in a pair of atomic frequency combs, and recover them delayed in time as a photon echo. In this manner we have demonstrated record ultrasoundmodulated sideband-to-carrier discrimination (49dB). Further, we confirm that the technique is compatible with highly scattering samples, and present initial acoustic pulse tracking measurements. This strongly suggests the suitability of the technique for biological tissue imaging

    Diffusing-wave polarimetry for tissue diagnostics

    Get PDF
    We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes

    JUSTIFICATION THE TECHNOLOGY OF OBTAINING PROTEIN-VITAMIN FUNCTIONAL PRODUCTS.

    Get PDF
    The methodological approaches to the substantiation of the technology of protein-vitamin products of functional orientation using soy, root and fruit raw materials growing in the Far Eastern region of Russia are developed. Data were obtained enabling the design of nutritional systems of functional orientation in the extended assortment. Keywords: functional products, assortment, soybean, root and berry raw materials, parameters, technology, scheme, composition, design

    Propagation of Cylindrical Vector Laser Beams in Turbid Tissue-Like Scattering Media

    Get PDF
    We explore the propagation of the cylindrical vector beams (CVB) in turbid tissue-like scattering medium in comparison with the conventional Gaussian laser beam. The study of propagation of CVB and Gaussian laser beams in the medium is performed utilizing the unified electric field Monte Carlo model. The implemented Monte Carlo model is a part of a generalized on-line computational tool and utilizes parallel computing, executed on the NVIDIA Graphics Processing Units (GPUs) supporting Compute Unified Device Architecture (CUDA). Using extensive computational studies, we demonstrate that after propagation through the turbid tissue-like scattering medium, the degree of fringe contrast for CVB becomes at least twice higher in comparison to the conventional linearly polarized Gaussian beam. The results of simulations agree with the results of experimental studies. Both experimental and theoretical results suggest that there is a high potential of the application of CVB in the diagnosis of biological tissues

    Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface

    Get PDF
    In the framework of further development of a unified computational tool for the needs of biomedical optics, we introduce an electric field Monte Carlo (MC) model for simulation of backscattering of coherent linearly polarized light from a turbid tissue-like scattering medium with a rough surface. We consider the laser speckle patterns formation and the role of surface roughness in the depolarization of linearly polarized light backscattered from the medium. The mutual phase shifts due to the photons' pathlength difference within the medium and due to reflection/refraction on the rough surface of the medium are taken into account. The validation of the model includes the creation of the phantoms of various roughness and optical properties, measurements of co-and cross-polarized components of the backscattered/reflected light, its analysis and extensive computer modeling accelerated by parallel computing on the NVIDIA graphics processing units using compute unified device architecture (CUDA). The analysis of the spatial intensity distribution is based on second-order statistics that shows a strong correlation with the surface roughness, both with the results of modeling and experiment. The results of modeling show a good agreement with the results of experimental measurements on phantoms mimicking human skin. The developed MC approach can be used for the direct simulation of light scattered by the turbid scattering medium with various roughness of the surface
    corecore