2,614 research outputs found

    Vegetation anomalies caused by antecedent precipitation in most of the world

    Get PDF
    Quantifying environmental controls on vegetation is critical to predict the net effect of climate change on global ecosystems and the subsequent feedback on climate. Following a non-linear Granger causality framework based on a random forest predictive model, we exploit the current wealth of multi-decadal satellite data records to uncover the main drivers of monthly vegetation variability at the global scale. Results indicate that water availability is the most dominant factor driving vegetation globally: about 61% of the vegetated surface was primarily water-limited during 1981-2010. This included semiarid climates but also transitional ecoregions. Intraannually, temperature controls Northern Hemisphere deciduous forests during the growing season, while antecedent precipitation largely dominates vegetation dynamics during the senescence period. The uncovered dependency of global vegetation on water availability is substantially larger than previously reported. This is owed to the ability of the framework to (1) disentangle the co-linearities between radiation/temperature and precipitation, and (2) quantify non-linear impacts of climate on vegetation. Our results reveal a prolonged effect of precipitation anomalies in dry regions: due to the long memory of soil moisture and the cumulative, nonlinear, response of vegetation, water-limited regions show sensitivity to the values of precipitation occurring three months earlier. Meanwhile, the impacts of temperature and radiation anomalies are more immediate and dissipate shortly, pointing to a higher resilience of vegetation to these anomalies. Despite being infrequent by definition, hydro-climatic extremes are responsible for up to 10% of the vegetation variability during the 1981-2010 period in certain areas, particularly in water-limited ecosystems. Our approach is a first step towards a quantitative comparison of the resistance and resilience signature of different ecosystems, and can be used to benchmark Earth system models in their representations of past vegetation sensitivity to changes in climate

    A non-linear Granger-causality framework to investigate climate-vegetation dynamics

    Get PDF
    Satellite Earth observation has led to the creation of global climate data records of many important environmental and climatic variables. These come in the form of multivariate time series with different spatial and temporal resolutions. Data of this kind provide new means to further unravel the influence of climate on vegetation dynamics. However, as advocated in this article, commonly used statistical methods are often too simplistic to represent complex climate-vegetation relationships due to linearity assumptions. Therefore, as an extension of linear Granger-causality analysis, we present a novel non-linear framework consisting of several components, such as data collection from various databases, time series decomposition techniques, feature construction methods, and predictive modelling by means of random forests. Experimental results on global data sets indicate that, with this framework, it is possible to detect non-linear patterns that are much less visible with traditional Granger-causality methods. In addition, we discuss extensive experimental results that highlight the importance of considering non-linear aspects of climate-vegetation dynamics

    GLEAM v3 : satellite-based land evaporation and root-zone soil moisture

    Get PDF
    The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms dedicated to the estimation of terrestrial evaporation and root-zone soil moisture from satellite data. Ever since its development in 2011, the model has been regularly revised, aiming at the optimal incorporation of new satellite-observed geophysical variables, and improving the representation of physical processes. In this study, the next version of this model (v3) is presented. Key changes relative to the previous version include (1) a revised formulation of the evaporative stress, (2) an optimized drainage algorithm, and (3) a new soil moisture data assimilation system. GLEAM v3 is used to produce three new data sets of terrestrial evaporation and root-zone soil moisture, including a 36-year data set spanning 1980-2015, referred to as v3a (based on satellite-observed soil moisture, vegetation optical depth and snow-water equivalent, reanalysis air temperature and radiation, and a multi-source precipitation product), and two satellite-based data sets. The latter share most of their forcing, except for the vegetation optical depth and soil moisture, which are based on observations from different passive and active C-and L-band microwave sensors (European Space Agency Climate Change Initiative, ESA CCI) for the v3b data set (spanning 2003-2015) and observations from the Soil Moisture and Ocean Salinity (SMOS) satellite in the v3c data set (spanning 2011-2015). Here, these three data sets are described in detail, compared against analogous data sets generated using the previous version of GLEAM (v2), and validated against measurements from 91 eddy-covariance towers and 2325 soil moisture sensors across a broad range of ecosystems. Results indicate that the quality of the v3 soil moisture is consistently better than the one from v2: average correlations against in situ surface soil moisture measurements increase from 0.61 to 0.64 in the case of the v3a data set and the representation of soil moisture in the second layer improves as well, with correlations increasing from 0.47 to 0.53. Similar improvements are observed for the v3b and c data sets. Despite regional differences, the quality of the evaporation fluxes remains overall similar to the one obtained using the previous version of GLEAM, with average correlations against eddy-covariance measurements ranging between 0.78 and 0.81 for the different data sets. These global data sets of terrestrial evaporation and root-zone soil moisture are now openly available at www.GLEAM.eu and may be used for large-scale hydrological applications, climate studies, or research on land-atmosphere feedbacks

    Terrestrial evaporation response to modes of climate variability

    Get PDF
    Large-scale modes of climate variability (or teleconnection patterns), such as the El Nino Southern Oscillation and the North Atlantic Oscillation, affect local weather worldwide. However, the response of terrestrial water and energy fluxes to these modes of variability is still poorly understood. Here, we analyse the response of evaporation to 16 teleconnection patterns, using a simple supervised learning framework and global observation-based datasets of evaporation and its key climatic drivers. Our results show that the month-to-month variability in terrestrial evaporation is strongly affected by (coupled) oscillations in sea-surface temperature and air pressure: in specific hotspot regions, up to 40% of the evaporation dynamics can be explained by climate indices describing the fundamental modes of climate variability. While the El Nino Southern Oscillation affects the dynamics in land evaporation worldwide, other phenomena such as the East Pacific-North Pacific teleconnection pattern are more dominant at regional scales. Most modes of climate variability affect terrestrial evaporation by inducing changes in the atmospheric demand for water. However, anomalies in precipitation associated to particular teleconnections are crucial for the evaporation in water-limited regimes, as well as in forested regions where interception loss forms a substantial fraction of total evaporation. Our results highlight the need to consider the concurrent impact of these teleconnections to accurately predict the fate of the terrestrial branch of the hydrological cycle, and provide observational evidence to help improve the representation of surface fluxes in Earth system models

    Contribution of water-limited ecoregions to their own supply of rainfall

    Get PDF
    The occurrence of wet and dry growing seasons in water-limited regions remains poorly understood, partly due to the complex role that these regions play in the genesis of their own rainfall. This limits the predictability of global carbon and water budgets, and hinders the regional management of naturalresources. Using novel satellite observations and atmospheric trajectory modelling, we unravel the origin and immediate drivers of growing-season precipitation, and the extent to which ecoregions themselves contribute to their own supply of rainfall. Results show that persistent anomalies in growing-season precipitation—and subsequent biomass anomalies—are caused by a complex interplay of land and ocean evaporation, air circulation and local atmospheric stability changes. For regions such as the Kalahari and Australia, the volumes of moisture recycling decline in dry years, providing a positive feedback that intensifies dry conditions. However, recycling ratios increase up to40%, pointing to the crucial role of these regions in generating their own supply of rainfall; transpiration in periods of water stress allows vegetation to partly offset the decrease in regional precipitation. Findings highlight the need to adequately represent vegetation–atmosphere feedbacks in models to predict biomass changes and to simulate the fate of water-limited regions in our warming climate

    Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture

    Get PDF
    [1] Global trends in a new multi-satellite surface soil moisture dataset were analyzed for the period 1988–2010. 27% of the area covered by the dataset showed significant trends (p = 0.05). Of these, 73% were negative and 27% positive. Subtle drying trends were found in the Southern US, central South America, central Eurasia, northern Africa and the Middle East, Mongolia and northeast China, northern Siberia, and Western Australia. The strongest wetting trends were found in southern Africa and the subarctic region. Intra-annual analysis revealed that most trends are not uniform among seasons. The most prominent trend patterns in remotely sensed surface soil moisture were also found in GLDAS-Noah and ERA Interim modeled surface soil moisture and GPCP precipitation, lending confidence to the obtained results. The relationship with trends in GIMMS-NDVI appeared more complex. In areas of mutual disagreement more research is needed to identify potential deficiencies in models and/or remotely sensed products

    A carbon sink-driven approach to estimate gross primary production from microwave satellite observations

    Get PDF
    Global estimation of Gross Primary Production (GPP) - the uptake of atmospheric carbon dioxide by plants through photosynthesis - is commonly based on optical satellite remote sensing data. This presents a source-driven approach since it uses the amount of absorbed light, the main driver of photosynthesis, as a proxy for GPP. Vegetation Optical Depth (VOD) estimates obtained from microwave sensors provide an alternative and independent data source to estimate GPP on a global scale, which may complement existing GPP products. Recent studies have shown that VOD is related to aboveground biomass, and that both VOD and temporal changes in VOD relate to GPP. In this study, we build upon this concept and propose a model for estimating GPP from VOD. Since the model is driven by vegetation biomass, as observed through VOD, it presents a carbon sink-driven approach to quantify GPP and, therefore, is conceptually different from common source-driven approaches. The model developed in this study uses single frequencies from active or passive microwave VOD retrievals from C-, X- and Ku-band (Advanced Scatterometer (ASCAT) and Advanced Microwave Scanning Radiometer for Earth Observation (AMSR-E)) to estimate GPP at the global scale. We assessed the ability for temporal and spatial extrapolation of the model using global GPP from FLUXCOM and in situ GPP from FLUXNET. We further performed upscaling of in situ GPP based on different VOD data sets and compared these estimates with the FLUXCOM and MODerate-resolution Imaging Spectroradiometer (MODIS) GPP products. Our results show that the model developed for individual grid cells using VOD and change in VOD as input performs well in predicting temporal patterns in GPP for all VOD data sets. For spatial extrapolation of the model, however, additional input variables are needed to represent the spatial variability of the VOD-GPP relationship due to differences in vegetation type. As additional input variable, we included the grid cell median VOD (as a proxy for vegetation cover), which increased the model performance during cross validation. Mean annual GPP obtained for AMSR-E X-band data tends to overestimate mean annual GPP for FLUXCOM and MODIS but shows comparable latitudinal patterns. Overall, our findings demonstrate the potential of VOD for estimating GPP. The sink-driven approach provides additional information about GPP independent of optical data, which may contribute to our knowledge about the carbon source-sink balance in different ecosystems

    Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors

    Get PDF
    Information about the spatiotemporal variability of soil moisture is critical for many purposes, including monitoring of hydrologic extremes, irrigation scheduling, and prediction of agricultural yields. We evaluated the temporal dynamics of 18 state-of-the-art (quasi-)global near-surface soil moisture products, including six based on satellite retrievals, six based on models without satellite data assimilation (referred to hereafter as "open-loop" models), and six based on models that assimilate satellite soil moisture or brightness temperature data. Seven of the products are introduced for the first time in this study: one multi-sensor merged satellite product called MeMo (Merged soil Moisture) and six estimates from the HBV (Hydrologiska Byrans Vattenbalansavdelning) model with three precipitation inputs (ERA5, IMERG, and MSWEP) with and without assimilation of SMAPL3E satellite retrievals, respectively. As reference, we used in situ soil moisture measurements between 2015 and 2019 at 5 cm depth from 826 sensors, located primarily in the USA and Europe. The 3-hourly Pearson correlation (R) was chosen as the primary performance metric. We found that application of the Soil Wetness Index (SWI) smoothing filter resulted in improved performance for all satellite products. The best-to-worst performance ranking of the four single-sensor satellite products was SMAPL3E(SWI), SMOSSWI, AMSR2(SWI), and ASCAT(SWI), with the L-band-based SMAPL3ESWI (median R of 0.72) outperforming the others at 50% of the sites. Among the two multi-sensor satellite products (MeMo and ESA-CCISWI), MeMo performed better on average (median R of 0.72 versus 0.67), probably due to the inclusion of SMAPL3ESWI. The best-to-worst performance ranking of the six openloop models was HBV-MSWEP, HBV-ERA5, ERA5-Land, HBV-IMERG, VIC-PGF, and GLDAS-Noah. This ranking largely reflects the quality of the precipitation forcing. HBV-MSWEP (median R of 0.78) performed best not just among the open-loop models but among all products. The calibration of HBV improved the median R by C0 :12 on average compared to random parameters, highlighting the importance of model calibration. The best-to-worst performance ranking of the six models with satellite data assimilation was HBV-MSWEP+SMAPL3E, HBV-ERA5+SMAPL3E, GLEAM, SMAPL4, HBV-IMERG+SMAPL3E, and ERA5. The assimilation of SMAPL3E retrievals into HBV-IMERG improved the median R by C0:06, suggesting that data assimilation yields significant benefits at the global scale

    Earth system data cubes unravel global multivariate dynamics

    Get PDF
    Understanding Earth system dynamics in light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, several practical hurdles, especially the lack of data interoperability, limit the joint potential of these data streams. Today, many initiatives within and beyond the Earth system sciences are exploring new approaches to overcome these hurdles and meet the growing interdisciplinary need for data-intensive research; using data cubes is one promising avenue. Here, we introduce the concept of Earth system data cubes and how to operate on them in a formal way. The idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency, and other grids alike, allows effective application of user-defined functions to co-interpret Earth observations and/or model-data integration. An implementation of this concept combines analysis-ready data cubes with a suitable analytic interface. In three case studies, we demonstrate how the concept and its implementation facilitate the execution of complex workflows for research across multiple variables, and spatial and temporal scales: (1) summary statistics for ecosystem and climate dynamics; (2) intrinsic dimensionality analysis on multiple timescales; and (3) model-data integration. We discuss the emerging perspectives for investigating global interacting and coupled phenomena in observed or simulated data. In particular, we see many emerging perspectives of this approach for interpreting large-scale model ensembles. The latest developments in machine learning, causal inference, and model-data integration can be seamlessly implemented in the proposed framework, supporting rapid progress in data-intensive research across disciplinary boundaries. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved
    • …
    corecore