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Abstract. Satellite Earth observation has led to the creation
of global climate data records of many important environ-
mental and climatic variables. These come in the form of
multivariate time series with different spatial and temporal
resolutions. Data of this kind provide new means to fur-
ther unravel the influence of climate on vegetation dynamics.
However, as advocated in this article, commonly used statis-
tical methods are often too simplistic to represent complex
climate–vegetation relationships due to linearity assump-
tions. Therefore, as an extension of linear Granger-causality
analysis, we present a novel non-linear framework consist-
ing of several components, such as data collection from vari-
ous databases, time series decomposition techniques, feature
construction methods, and predictive modelling by means
of random forests. Experimental results on global data sets
indicate that, with this framework, it is possible to detect
non-linear patterns that are much less visible with traditional
Granger-causality methods. In addition, we discuss extensive
experimental results that highlight the importance of consid-
ering non-linear aspects of climate–vegetation dynamics.

1 Introduction

Vegetation dynamics and the distribution of ecosystems are
largely driven by the availability of light, temperature, and
water; thus, they are mostly sensitive to climate conditions
(Nemani et al., 2003; Seddon et al., 2016; Papagiannopoulou
et al., 2017). Meanwhile, vegetation also plays a crucial role

in the global climate system. Plant life alters the characteris-
tics of the atmosphere through the transfer of water vapour,
exchange of carbon dioxide, partition of surface net radia-
tion (e.g. albedo), and impacts on wind speed and direction
(Nemani et al., 2003; McPherson et al., 2007; Bonan, 2008;
Seddon et al., 2016; Papagiannopoulou et al., 2017). Because
of the strong two-way relationship between terrestrial vegeta-
tion and climate variability, predictions of future climate can
be improved through a better understanding of the vegetation
response to past climate variability.

The current wealth of Earth observation data can be used
for this purpose. Nowadays, independent sensors on differ-
ent platforms collect optical, thermal, microwave, altimetry,
and gravimetry information, and are used to monitor vege-
tation, soils, oceans, and atmosphere (e.g. Su et al., 2011;
Lettenmaier et al., 2015; McCabe et al., 2017). The longest
composite records of environmental and climatic variables
already span up to 35 years, enabling the study of multi-
decadal climate–biosphere interactions. Simple correlation
statistics and multilinear regressions using some of these
data sets have led to important steps forward in understand-
ing the links between vegetation and climate (e.g. Nemani
et al., 2003; Barichivich et al., 2014; Wu et al., 2015). How-
ever, these methods in general are insufficient when it comes
to assessing causality, particularly in systems like the land–
atmosphere continuum in which complex feedback mecha-
nisms are involved. A commonly used alternative consists
of Granger-causality modelling (Granger, 1969). Analyses of
this kind have been applied in climate attribution studies to
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investigate the influence of one climatic variable on another,
e.g. the Granger-causal effect of CO2 on global temperature
(Triacca, 2005; Kodra et al., 2011; Attanasio, 2012), of veg-
etation and snow coverage on temperature (Kaufmann et al.,
2003), of sea surface temperatures on the North Atlantic Os-
cillation (Mosedale et al., 2006), or of the El Niño–Southern
Oscillation on the Indian monsoon (Mokhov et al., 2011).
Nonetheless, Granger causality should not be interpreted as
“real causality”; one assumes that a time series A Granger
causes a time series B if the past of A is helpful in predict-
ing the future of B (see Sect. 2 for a more formal definition).
However, the underlying statistical model that is commonly
considered in such a context is a linear vector autoregressive
model, which is (again), by definition, linear; see, e.g. Shahin
et al. (2014); Chapman et al. (2015).

In this article, we show new experimental evidence that
advocates the need non-linear methods to study climate–
vegetation dynamics due to the non-linear nature of these
interactions (Foley et al., 1998; Zeng et al., 2002; Verbesselt
et al., 2016). To this end, we have assembled a large, compre-
hensive database, comprising various global data sets of tem-
perature, radiation, and precipitation, originating from mul-
tiple online resources. We use the Normalized Difference
Vegetation Index (NDVI) to characterize vegetation, which
is commonly used as a proxy of plant productivity (Myneni
et al., 1997; Nemani et al., 2003). We followed an inclu-
sive data collection approach, aiming to consider all available
data sets with a worldwide coverage, and at least a 30-year
time span and monthly temporal resolution (Sect. 3). Our
novel non-linear Granger-causality framework is used for
finding climatic drivers of vegetation and consists of several
steps (Sect. 2). In a first step, we apply time series decompo-
sition techniques to the vegetation and the various climatic
time series to isolate seasonal cycles, trends, and anomalies.
Subsequently, we explore various techniques for construct-
ing more complex features from the decomposed climatic
time series. In a final step, we run a Granger-causality anal-
ysis on the NDVI anomalies, while replacing traditional lin-
ear vector autoregressive models with random forests. This
framework allows for modelling non-linear relationships and
prevents overfitting. The results of the global application of
our framework are discussed in Sect. 4.

2 A Granger-causality framework for geosciences

2.1 Linear Granger causality revisited

We start with a formal introduction to Granger causality for
the case of two times series, denoted as x = [x1,x2, . . .,xN ]

and y = [y1,y2, . . .,yN ], with N being the length of the time
series. In this work, y alludes to the NDVI anomaly time se-
ries at a given pixel, whereas x can represent the time series
of any climatic variable at that pixel (e.g. temperature, pre-
cipitation, radiation). Granger causality can be interpreted as

predictive causality, for which one attempts to forecast yt (at
the specific timestamp t) given the values of x and y in pre-
vious timestamps. Granger (1969) postulated that x causes y
if the autoregressive forecast of y improves when informa-
tion of x is taken into account. In order to make this defini-
tion more precise, it is important to introduce a performance
measure to evaluate the forecast. Below, we will work with
the coefficient of determination R2, which is here defined as
follows:

R2(y, ŷ)= 1−
RSS
TSS
= 1−

∑N
i=P+1(yi − ŷi)

2∑N
i=P+1(yi − ȳ)

2
, (1)

where y represents the observed time series, ȳ is the mean of
this time series, ŷ is the predicted time series obtained from
a given forecasting model, and P is the length of the lag-time
moving window. Therefore, the R2 can be interpreted as the
fraction of explained variance by the forecasting model, and
it increases when the performance of the model increases,
reaching the theoretical optimum of 1 for an error-free fore-
cast and being negative when the predictions are less repre-
sentative of the observations than the mean of the observa-
tions. Using R2, one can now define Granger causality in a
more formal way.
Definition 1. We say that time series x Granger causes
y if R2(y, ŷ) increases when xt−1,xt−2, . . .,xt−P are in-
cluded in the prediction of yt , in contrast to considering
yt−1,yt−2, . . .,yt−P only, where P is the lag-time moving
window.

In climate sciences, linear vector autoregressive (VAR)
models are often employed to make forecasts (Stock and
Watson, 2001; Triacca, 2005; Kodra et al., 2011; Attanasio,
2012). A linear VAR model of order P boils down to the
following representation:[
yt
xt

]
=

[
β01
β02

]
+

P∑
p=1

[
β11p β12p
β21p β22p

][
yt−p
xt−p

]
+

[
ε1
ε2

]
, (2)

with βij being parameters that need to be estimated and ε1
and ε2 referring to two white noise error terms. This model
can be used to derive the predictions required to determine
Granger causality. In that sense, time series x Granger causes
time series y if at least one of the parameters β12p for any p
significantly differs from 0. Specifically, and since we are
focusing on the vegetation time series as the only target, the
following two models are compared:

yt = ŷt + ε1 = β01+

P∑
p=1

(
β11pyt−p +β12pxt−p

)
+ ε1 (3)

yt = ŷt + ε1 = β01+

P∑
p=1

β11pyt−p + ε1. (4)

We will refer to Eq. (3) as the “full model” and to Eq. (4) as
the “baseline model”, since the former incorporates all avail-
able information and the latter only information of y.
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Comparing the above two models, x Granger causes y if
the full model manifests a substantially better predictive per-
formance in terms of R2 than the baseline model. To this
end, statistical tests can be employed, for which one typi-
cally assumes that the errors in the model follow a Gaussian
distribution (Maddala and Lahiri, 1992). However, our above
definition differs from the perspective in research papers
that develop statistical tests for Granger causality (Hacker
and Hatemi-J, 2006), because we intend to move away from
statistical hypothesis testing, since the assumptions behind
such testing are typically violated when working with climate
data where neither variables nor observational techniques are
fully independent from each other in most cases, and errors
are not normally distributed (see Sect. 2.4 for further discus-
sion).

In climate studies, the Granger-causal relationship be-
tween two time series x and y has often been investigated
in the bivariate setting (Elsner, 2006, 2007; Kodra et al.,
2011; Attanasio, 2012; Attanasio et al., 2012). However, such
an analysis might lead to incorrect conclusions, because ad-
ditional (confounding) effects exerted by other climatic or
environmental variables are not taken into account (Geiger
et al., 2015). This problem can be mitigated by considering
time series of additional variables. For example, let us as-
sume one has observed a third variable w, which might act
as a confounder in deciding whether x Granger causes y. The
above definition then naturally extends as follows.
Definition 2. We say that time series x Granger causes
y conditioned on time series w if R2(y, ŷ) increases
when xt−1,xt−2, . . ., xt−P are included in the prediction
of yt , in contrast to considering yt−1,yt−2, . . .,yt−P and
wt−1,wt−2, . . .,wt−P only, where P is the lag-time moving
window.

Similarly as above, we refer to the two models as full and
baseline model, respectively. Therefore, in the trivariate set-
ting, Granger causality might be tested using the following
linear VAR model:

ytxt
wt

=
β01
β02
β03

+ P∑
p=1

β11p β12p β13p
β21p β22p β23p
β31p β32p β33p

yt−pxt−p
wt−p


+

ε1
ε2
ε3

 , (5)

where a causal relationship between x and y exists if at least
one β12p significantly differs from 0. As previously men-
tioned, the time series w might also have a causal effect on
y and be correlated with x. For this reason, w should be in-
cluded in both models (baseline and full), so that the method
can cope with cross-correlations between predictors or, in our
case, between the climatic drivers of vegetation anomalies.
An extension of this definition for more than three time se-
ries is straightforward.

2.2 Overfitting and out-of-sample testing

It is well known in the statistical literature that predictions
made on in-sample data, i.e. the same data that were used to
fit the statistical model, tend to be optimistic. This process
is often referred to as overfitting; i.e. by definition, the fit-
ting process leads to parameter values that cause the model
to mimic the observed data as closely as possible (Friedman
et al., 2001). In the context of Granger-causality analysis,
overfitting will occur more prominently in the multivariate
case, when the number of considered time series increases.
The results in Sect. 4 are based on multivariate analysis; thus,
they are vulnerable to overfitting; the situation further aggra-
vates when switching from linear to non-linear models, be-
cause then the number of parameters typically increases to
allow for a more flexible functional model form.

To prevent overfitting, out-of-sample data should be
used in evaluating the predictive performance in Granger-
causality studies (Gelper and Croux, 2007). The most
straightforward procedure for creating out-of-sample data is
to separate the time frame into two parts, a training set and
a test set, which typically constitute the first and last halves
of the time frame. A few authors have adopted this approach
for climatic attribution (Attanasio et al., 2012; Pasini et al.,
2012); however, satellite Earth observation time series are
usually too short to allow for train-test splitting in that fash-
ion. An alternative approach, which uses the available data in
an efficient manner, is cross-validation. To this end, the time
frame is divided into a number of short intervals, typically a
few years of data, in which one interval serves as a test set,
while all remaining data are used for parameter fitting. This
procedure is repeated until all intervals have served once as
a test set, and the prediction errors obtained in each round
are aggregated so that one global performance measure can
be computed. We direct the reader to Michaelsen (1987) and
Von Storch and Zwiers (2001) for further discussion.

The inclusion of a regularization term in the fitting process
of over-parameterized linear models will avoid overfitting.
Typical regularizers that shrink the parameter vectors of lin-
ear models towards 0 are L2 norms (as in ridge regression),
L1 norms (as in least absolute shrinkage and selection opera-
tor (LASSO) models), or a combination of the two norms (as
in elastic nets) (Friedman et al., 2001). Translated to VAR
models, this implies that one should impose restrictions on
the parameter matrix of Eq. (5), as done in the recent theo-
retical paper of Gregorova et al. (2015). In this work, we want
to identify causal relationships between a vegetation time se-
ries and various climatic time series. Hence, there is only
one target variable of interest, and a simpler approach can
be adopted. Denoting the vegetation time series by y, one
can mimic in the trivariate setting a VAR model by means of
three autoregressive ridge regression models:
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yt = ŷt + ε1 = β01

+

P∑
p=1

(
β11pyt−p +β12pxt−p +β13pwt−p

)
+ ε1 (6)

xt = x̂t + ε2 = β02

+

P∑
p=1

(
β21pyt−p +β22pxt−p +β23pwt−p

)
+ ε2 (7)

wt = ŵt + ε3 = β03

+

P∑
p=1

(
β31pyt−p +β32pxt−p +β33pwt−p

)
+ ε3. (8)

In this article, we aim to detect the climate drivers of vegeta-
tion and not the feedback of vegetation on climate (see, e.g.
Green et al., 2017). Therefore, it suffices to retain Eq. (6) in
our analysis as is stated above for the trivariate case (Eq. 5).
Concatenating all parameters of this model into a vector
β = [β01,β11p, . . .,β13p], one fits the parameters in ridge re-
gression by solving the following optimization problem:

min
β

N∑
P+1

(yt − ŷt )
2
+ λ||β||2, (9)

with λ being a regularization parameter, that is tuned using
a validation set or nested cross-validation, and ||β||2 being
a penalty term, i.e. the squared L2 norm of the coefficient
vector. The sum only starts at P + 1 because a moving win-
dow of P lags is considered. For simplicity, we describe the
above approach for the trivariate setting, even though the to-
tal number of variables used in our study is a lot larger (see
Sect. 3); nonetheless, extensions to the multivariate setting
are straightforward.

2.3 Non-linear Granger causality

The methodology that we develop in this paper is closely
connected to the methods explained in the previous section.
However, as we hypothesize that the relationships between
climate and vegetation can be highly non-linear (Foley et al.,
1998; Zeng et al., 2002; Verbesselt et al., 2016), we also re-
place the linear VAR models in the Granger-causality frame-
work with non-linear machine learning models. In other
fields, such as neuroscience, kernel methods or other non-
linear models have been used for the investigation of non-
linear Granger-causality relationships between time series
(Ancona et al., 2004; Marinazzo et al., 2008). In our anal-
ysis, we use simple non-linear methods that are applicable to
large data sets. More sophisticated approaches typically do
not scale well enough in global climate–vegetation data sets.
Therefore, in our work, the machine learning algorithm we
choose is random forests due to its excellent computational
scalability (Breiman, 2001). Random forests is a well-known

method that has shown its merits in diverse application do-
mains and has successfully been applied to Earth observa-
tions in both classification and regression problems (Dorigo
et al., 2012; Rodriguez-Galiano et al., 2012; Loosvelt et al.,
2012a, b). Briefly summarized, the random forest algorithm
forms a combination of multiple decision trees, where each
tree contributes a single vote to the final output, which is the
most frequent class (for classification problems) or the aver-
age (for regression problems).

Compared to most application domains where random
forests are applied, we employ the algorithm in a slightly dif-
ferent way as an autoregressive non-linear method for time
series forecasting. In practice, this means that we replace the
full and baseline linear model of Sect. 2.1 by a random for-
est model. At each pixel, the vegetation time series is still
considered as a response variable, and the various climate
time series serve as predictor variables (see Sect. 3.1 for an
overview of our database). For a given value of the NDVI
time series y at timestamp t , we investigate properties of
the different predictor time series – temperature, radiation,
etc. – by considering a moving window including a num-
ber of previous months (Fig.1). In this way, the definition of
Granger causality in Sect. 2.1 is adopted. Any climatic time
series x Granger causes vegetation time series y if the predic-
tive performance in terms of R2 improves when the moving
window xt−1,xt−2, . . .,xt−P is incorporated in the random
forests, in contrast to considering yt−1,yt−2, . . .,yt−P and
wt−1,wt−2, . . .,wt−P only. Analogous to the linear case, we
will speak of a full random forest model when all variables
are taken into account and of a baseline random forest model
when only the moving window yt−1,yt−2, . . .,yt−P of y is
considered as a predictor. In Fig. 1, this principle is extended
to four time series. The baseline random forest predictions
of NDVI at t1 are based on the observations from the green
moving window only, whereas the full random forest model
includes the three red moving windows as well.

In our experiments, we treat each continental pixel as a
separate problem and use the Scikit-learn library (Pedregosa
et al., 2011) for the random forest regressor implementation,
with the number of trees equal to 100 and the maximum num-
ber of predictor variables per node equal to the square root of
the total number of predictor variables. Changes in these pa-
rameters or in the randomness of the algorithm do not cause
substantial changes in the results (not shown). Model perfor-
mance is assessed by means of 5-fold cross-validation. The
window length is fixed to 12 months because initial exper-
imental results revealed that longer time windows did not
lead to improvements in the predictions (results omitted). Fi-
nally, we also experimented with techniques that exploit spa-
tial correlations to improve the predictive performance of the
model (see Sect. 4.3).
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t1

Figure 1. An illustrative example of the moving window approach considered in the analysis of vegetation drivers at a given timestamp t1.
Here, NDVI takes the role of the time series y in Eq. (3). In addition, three climate predictor time series are shown. The baseline random
forest model only considers the green moving window, whereas the full random forest model includes the red moving windows as well. The
pixel corresponds to a location in North America (lat: 37.5◦, long: −87.5◦).

2.4 Granger-causal inference

Generally, the null hypothesis (H0) of Granger causality is
that the baseline model has equal prediction error as the full
model. Alternatively, if the full model predicts the target vari-
able y significantly better than the baseline model, H0 is
rejected. In some applications, inference is drawn in VAR
by testing for significance of individual model parameters.
Other studies have used likelihood-ratio tests, in which the
full and baseline models are nested models (Mosedale et al.,
2006). However, in both cases, the models are trained and
evaluated on the same in-sample data. As it has been dis-
cussed above, the performance of any Granger-causal model
should be validated on out-of-sample data to avoid overfit-
ting (see Sect. 2.2). Therefore, the null hypothesis of non-
causality in the formulation stated above should be tested for
by comparing out-of-sample prediction errors. To this end,
statistical tests have been proposed and applied both in the
econometric literature as well as in Granger-causality studies
in the context of climate science. These kinds of tests, which
compare out-of-sample prediction errors, are available for
models for which parameter estimation is done through or-
dinary least squares or maximum likelihood estimation (At-
tanasio et al., 2013). Moreover, the asymptotic and finite-
sample properties of a battery of tests for comparing fore-
casting accuracies of different models have been studied
and, more recently, further tests aiming specifically at nested
models have been proposed (Clark and McCracken, 2001).

Unfortunately, all the tests mentioned above were de-
signed to compare the out-of-sample prediction errors of lin-

ear parametric models (McCracken, 2007). In climate, re-
lations between variables are highly non-linear and tend to
become even more non-linear as the temporal resolution of
the data becomes finer (Attanasio et al., 2013). Therefore,
it would be convenient to have at our disposal a statistical
test to assess the significance of any quantitative evidence
of climate (Granger) causing vegetation anomalies. Ideally,
the test would be model independent so that any non-linear
model could be used. One well-known model-independent
test to compare the accuracy of two forecasts is the Diebold–
Mariano test (DM test) (Diebold, 2015). Although its ap-
plication to Granger causality is promising, the test does
not hold for nested models, because under H0 the predic-
tion errors from two nested models are exactly the same and
perfectly correlated (McCracken, 2007). An alternative ap-
proach for comparing the predictive performance of differ-
ent models is to use resampling methods such as the boot-
strap or schemes such as 5×2 cross-validation (Dietterich,
1998). Methods based on the bootstrap have been used be-
fore in Granger-causality studies with climate data (Diks and
Mudelsee, 2000; Attanasio et al., 2013). However, these re-
sults need to be interpreted with care because, by increasing
the number of bootstrap samples, the power of any paired test
(such as the Wilcoxon signed rank test) to detect significant
differences between the error distributions of both models
(full and baseline) increases as well. For these reasons, we
conclude that developing a statistical test that is able to han-
dle non-stationary time series and non-linear models is not a
trivial task. To the best of our knowledge, no such test exists
in the current literature. In this paper, we focus on express-
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ing Granger causality in a quantitative instead of a qualitative
way and stress the gained improvement with the use of a non-
linear model.

3 Database creation and variable construction

3.1 Global data sets

Our non-linear Granger-causality framework is used to dis-
entangle the effect of past climate variability on global veg-
etation dynamics. To this end, climate data sets of obser-
vational nature – mostly based on satellite and in situ ob-
servations – have been assembled to construct time series
(see Sect. 3.3) that are then used to predict NDVI anoma-
lies following the linear and non-linear causality frameworks
described in Sect. 2. Data sets have been selected from
the current pool of satellite and in situ observations on the
basis of meeting a series of spatiotemporal requirements:
(a) expected relevance of the variable for driving vegeta-
tion dynamics, (b) multidecadal record and global coverage
available, and (c) adequate spatial and temporal resolution.
The selected data sets can be classified into three different
categories: water availability (including precipitation, snow
water equivalent, and soil moisture data sets), temperature
(both for the land surface and the near-surface atmosphere),
and radiation (considering different radiative fluxes indepen-
dently). Rather than using a single data set for each variable,
we have collected all data sets meeting the above require-
ments. This has led to a total of 21 different data sets which
are listed in Table 1. They span the study period 1981–2010
at the global scale and have been converted to a common
monthly temporal resolution and 1◦× 1◦ latitude–longitude
spatial resolution. To do so, we have used averages to re-
sample original data sets found at finer native resolution and
linear interpolation to resample coarser-resolution ones.

For temperature, we consider seven different products
based on in situ and satellite data: Climate Research Unit
(CRU-HR) (Harris et al., 2014), University of Delaware
(UDel) (Willmott and Matsuura, 2001), NASA Goddard
Institute for Space Studies (GISS) (Hansen et al., 2010),
merged land-ocean surface temperature (MLOST) (Smith
et al., 2008), International Satellite Cloud Climatology
Project (ISCCP) (Rossow and Duenas, 2004), and global
land surface temperature data (CFSR-Land) (Coccia et al.,
2015). We also included one reanalysis data set, the European
Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-Interim (Dee et al., 2011). In the case of precipita-
tion, eight products have been collected. Four of them re-
sult from the merging of in situ data only: Climate Research
Unit (CRU-HR) (Harris et al., 2014), University of Delaware
(UDel) (Willmott and Matsuura, 2001), Climate Prediction
Center Unified analysis (CPC-U) (Xie et al., 2007), and the
Global Precipitation Climatology Centre (GPCC) (Schneider
et al., 2011). The rest result from a combination of in situ
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and satellite data, and may include reanalysis: CPC Merged
Analysis of Precipitation (CMAP) (Xie and Arkin, 1997),
ERA-Interim (Dee et al., 2011), Global Precipitation Cli-
matology Project (GPCP) (Adler et al., 2003), and Multi-
Source Weighted-Ensemble Precipitation (MSWEP) (Beck
et al., 2017). For radiation, two different products have been
collected (considering incoming short-wave/long-wave and
surface net radiation as different time series): the first is the
NASA Global Energy and Water cycle Exchanges (GEWEX)
surface radiation budget (SRB) (Stackhouse et al., 2004)
based on satellite data, and the second is the ERA-Interim
reanalysis (Dee et al., 2011). For soil moisture, we use the
Global Land Evaporation Amsterdam Model (GLEAM) (Mi-
ralles et al., 2011; Martens et al., 2016) and the Climate
Change Initiative (CCI) product (Liu et al., 2012, 2011). Two
different soil moisture products by CCI are considered: the
passive microwave data set and the combined active/passive
product (Dorigo et al., 2017). Moreover, snow water equiv-
alent data come from the GlobSnow project (Luojus et al.,
2010).

To conclude, as a proxy for the state and activity of vegeta-
tion, we use the third-generation (3G) Global Inventory Mod-
eling and Mapping Studies (GIMMS) satellite-based NDVI
(Tucker et al., 2005), a commonly used long-term global
record of NDVI (Beck et al., 2011). We note that this data set
is used to derive the response variable in our approach (sea-
sonal NDVI anomalies; see Sect. 3.2), while all other data
sets are converted to predictor variables. The length of the
NDVI record (1981–2010) sets the study period to an inter-
val of 30 years.

3.2 Anomaly decomposition

In climate studies, Granger causality has already been ap-
plied on time series of seasonal anomalies (Attanasio, 2012;
Tuttle and Salvucci, 2016). The latter may be obtained in
a two-step decomposition procedure by first subtracting the
seasonal cycle and then the long-term trend from the raw
time series. Several competing decomposition methods have
been proposed in the literature, including additive models,
multiplicative models, and more sophisticated methods based
on break points (see, e.g. Cleveland et al., 1990; Grieser et al.,
2002; Verbesselt et al., 2010). In our framework, we used the
following approach: in a first step, at each given pixel, the
“raw” time series of the target variable yt and the climate
predictors (xt , wt ,. . . ) are detrended linearly based on a sim-
ple linear regression with the timestamp t as a predictor vari-
able applied to the entire study period. For the case of the
target variable, this can be denoted as follows:

yt ≈ y
Tr
t = α0+α1t, (10)

with α0 and α1 being the intersect and the slope of the linear
regression, respectively. We obtain in this way the detrended
time series yDt = yt − y

Tr
t . This detrending is needed to re-

move non-stationary signals in climatic time series, and al-
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Figure 2. The three components of the NDVI time series decom-
position of a specific pixel of the Northern Hemisphere (lat: 53.5◦,
long: 26.5◦). On top are the linear trend (black continuous line) and
the seasonal cycle (dashed black line) fitted on the raw data (red).
On the bottom are the remaining anomalies; see text for details.

lows us to draw the emphasis to the shorter-term multi-month
dynamics. By detrending, one can assure that the mean of
the probability distribution does not change over time; how-
ever, other moments of the probability distribution, such as
the variance, might still be time dependent. As classical sta-
tistical procedures for testing Granger causality (i.e. autore-
gressive model, statistical tests) are developed for stationary
time series, those methods are in fact not applicable to non-
stationary climate data. In a second step, after subtracting the
trend from the raw time series, the seasonal cycle ySt is calcu-
lated. When the assumption is made that the seasonal cycle is
annual and constant over time, one can simply estimate it as
the monthly expectation. To this end, the multi-year average
for each of the 12 months of the year is calculated. Finally,
the anomalies yRt can then be computed by subtracting the
corresponding monthly expectation from the detrended time
series: yRt = y

D
t − y

S
t . This procedure is schematically rep-

resented in Fig. 2.

3.3 Predictor variable construction

We do not limit our approach to considering raw and
anomaly time series of the data sets in Table 1 as predic-
tors but also take into consideration different lag times, past
cumulative values, and extreme indices (see following text).
These additional predictors, here referred to as “higher-level
variables”, are calculated based on raw and anomaly time se-
ries. Our application of Granger causality can be interpreted
as a way to identify patterns in climate during past moving
windows (see Fig. 1) that are predictive with respect to the
anomalies of vegetation time series. Therefore, by feeding
predictor variables from previous timestamps to a linear (or
non-linear) predictive model, one can identify subsequences
of interest in the moving window specified for timestamp
t , a technique that is similar to so-called shapelets (Ye and
Keogh, 2009). In addition, vegetation dynamics may not nec-
essarily reflect the climatic conditions from, e.g. 3 months
ago, but the average of the, e.g. three antecedent months.
This integrated response to antecedent environmental and cli-
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Figure 3. Example of lagged and cumulative variables extracted from a temperature time series. On top is part of a raw daily time series with
its monthly aggregation. In the middle is the 4-month lag-time monthly time series. On the bottom is the corresponding 4-month cumulative
variable. The pixel corresponds to a location in Kentucky, USA (lat: 37.5◦, long: −87.5◦).

matic conditions is referred to here as a “cumulative” re-
sponse. More formally, we construct a cumulative variable
of k months as the sum of time series observations in the last
k months:

Cumul[xt−1,xt−2, . . .,xt−k] =

k∑
p=1

xt−p. (11)

Note that, unlike in the case of lagged variables, cumulative
variables always include the period up to time t . Figure 3
illustrates an example of a 4-month cumulative variable. In
our analysis, we experimented with time lags covering a wide
range of time-lag values and concluded that including lags
of more than 6 months did not yield substantial predictive
power.

Another type of higher-level predictor variable that can
be constructed from the data sets in Table 1 are extreme in-
dices. Over the last few years, several research studies have
focused on defining and indexing climate extremes (Nicholls
and Alexander, 2007; Zwiers et al., 2013). As an example,
the Expert Team on Climate Change Detection and Indices
(ETCCDI) recommends the use of a range of extreme indices
related to temperature and precipitation (Zhang et al., 2011;
Donat et al., 2013). Here, we calculate a variety of analo-
gous indices for the whole set of the collected climatic vari-
ables, based on both the raw data sets as well as on the sea-
sonal anomalies (see Table 2). In addition, we derived lagged
and cumulative predictor variables from these extremes’ in-
dices to incorporate the potential impact of climatic extremes
occurring, e.g. 3 months ago, or during the previous, e.g.
3 months, respectively. All these resulting time series appear

as additional predictor variables in our non-linear Granger-
causality framework (see Sect. 2.3).

Combining the different climate and environmental pre-
dictor variables described above, we obtain a database of
4571 predictor variables per 1◦ pixel, covering 30 years at
a monthly temporal resolution.

4 Results and discussion

4.1 Detecting linear Granger-causal relationships

In a first experiment, we evaluate the extent to which climate
variability Granger causes the anomalies in vegetation using
a standard Granger-causality approach, in which only lin-
ear relationships between climate (predictors) and vegetation
(target variable) are considered. To this end, ridge regression
is used as a linear VAR model in the Granger-causality ap-
proach (note that this ridge regression will be substituted by
the non-linear random forest approach in Sect. 4.2). In the ap-
plication of the ridge regression, we use all climatic and envi-
ronmental predictor variables (Sect. 3.3) and adopt a nested
5-fold cross-validation to properly tune the hyper parameter
λ (see Eq. 9). Figure 4a shows the predictive performance
of the full ridge regression model. While the model explains
more than 40 % of the variability in NDVI anomalies in some
regions (R2 > 0.4), this is by itself not necessarily indicative
of climate Granger causing the vegetation anomalies, as it
may reflect simple correlations. In order to test the latter, we
compare the results of the full model to a baseline model,
i.e. an autoregressive ridge regression model that only uses
previous values of NDVI to predict the NDVI at time t (see
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Sect. 2.1). If climate Granger caused the variability of NDVI
at a given pixel, the full ridge regression model (Fig. 4a)
would show an increase in the predictive power over the pre-
dictions based on the baseline ridge regression model. How-
ever, the results unequivocally show that – when only lin-
ear relationships between vegetation and climate are consid-
ered – the areas for which vegetation anomalies are Granger
caused by climate are very limited, involving mainly semi-
arid regions and central Europe (Fig. 4b).

For further comparison, we analyse the predictive per-
formance obtained when (linear) Pearson correlation coef-
ficients are calculated on the training data sets, selecting
the highest correlation to the target variable for any of the
4571 predictor variables at each pixel. Figure 4c shows that
the explained variance is again rather low and, for most re-
gions, substantially lower than the R2 of the baseline ridge
regression model, here considered as the minimum to inter-
pret this predictive power as Granger causal. These results
indicate that, despite being routinely used as a standard tool
in climate–biosphere studies (see, e.g. Nemani et al., 2003),
univariate correlation analyses are unable to extract the nu-
ances of the relationships between climate and vegetation dy-
namics.

4.2 Linear versus non-linear Granger causality

To analyse the effect of climate on vegetation more thor-
oughly, we substitute the linear ridge regression model
(VAR) by the non-linear random forest model. Results in
Fig. 5 highlight the differences. Compared to the results in
Sect. 4.1, the predictive power substantially increases by con-
sidering non-linear relationships between vegetation and cli-
mate (Fig. 5a). This is the case for most land regions but is es-
pecially remarkable in semiarid regions of Australia, Africa,
and Central and North America, which are frequently ex-
posed to water limitations. In those regions, more that 40 %
of the variance of NDVI anomalies can be explained by an-
tecedent climate variability. These results are further inves-
tigated by Papagiannopoulou et al. (2017), who highlight
the crucial role of water supply for the anomalies in vegeta-
tion greenness in these and other regions. On the other hand,
the variance of NDVI explained in other areas, such as the
Eurasian taiga, tropical rainforests, or China, is again below
10 %. We hypothesize two potential reasons: (a) the uncer-
tainty in the observations used as target and predictors are
typically larger in these regions (especially in tropical forests
and at higher latitudes), and (b) these are regions in which
vegetation anomalies are not necessarily primarily controlled
by climate but may be predominantly driven by phenolog-
ical and biotic factors (Hutyra et al., 2007), occurrence of
wildfires (Van der Werf et al., 2010), limitations imposed
by the availability of soil nutrients (Fisher et al., 2012), or
agricultural practices (Liu et al., 2015). Nonetheless, the ex-
plained variance shown in Fig. 5a is again not necessarily
indicative of Granger causality. As we did in Fig. 4b, in or-

der to test whether the climatic and environmental controls
do, in fact, Granger cause the vegetation anomalies, we com-
pare the results of our full random forest model to a base-
line random forest model which only uses previous values
of NDVI to predict the NDVI at time t . As seen in Fig. 5b,
in this case, the improvement over the baseline is unambigu-
ous. One can conclude that – while not considering all po-
tential control variables in our analysis – climate dynamics
indeed (Granger) cause vegetation anomalies in most of the
continental land surface, with a larger impact on subtropical
regions and midlatitudes. Moreover, a comparison between
Figs. 4b and 5b unveils that these causal relationships are
highly non-linear, as expected given the distinct resistance
and resilience of different ecosystems, which are reflected
by a progressive response and recovery of vegetation to these
perturbations (Foley et al., 1998; Zeng et al., 2002; Verbesselt
et al., 2016).

For a better understanding of the results obtained by
the two models, we average the performance of each
model regionally. More specifically, we use the International
Geosphere-Biosphere Program (IGBP) (Loveland and Bel-
ward, 1997) land cover classification to stratify the mean and
variance of R2 for both the baseline and the full model in
Fig. 5 per IGBP land cover class. The bar plot in Fig. 6
shows that the full model outperforms the baseline model
in all IGBP land cover classes, i.e. that Granger causality
exists for all these biomes. In the parentheses, we note the
number of pixels per region. The error bars indicate that the
variances of the two models are analogous; i.e. they are low
or high in both models in the same land cover class. For the
Closed Shrublands region, one can observe the highest dif-
ference between the two models, yet only 19 pixels belong
to this biome type. In savannah regions, the performance of
the full model is high in comparison with other regions (see
Fig. 5). On the other hand, the lowest performance improve-
ment of the full model with respect to the baseline is ob-
served for the regions of Deciduous Needleleaf Forests and
Evergreen Broadleaf Forests. This shows that for these two
regions climate is not identified as a major control over vege-
tation dynamics (see discussion in previous paragraph about
tropical and boreal regions).

4.3 Spatial and temporal aspects

Environmental dynamics reveal their effect on vegetation at
different timescales. Since the adaptation of vegetation to en-
vironmental changes requires some time, and because soil
and atmosphere have a memory, a necessary aspect to in-
vestigate is the potential lag-time response of vegetation to
climate dynamics which relates to the ecosystem resistance
and resilience properties. The idea of exploring lag times
was introduced by several studies in the past (see, e.g. Davis,
1984; Braswell et al., 1997), and it has been adopted in vari-
ous studies more recently (Anderson et al., 2010; Kuzyakov
and Gavrichkova, 2010; Chen et al., 2014; Rammig et al.,
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Table 2. Extreme indices considered as predictive variables. These indices are derived from the raw (daily) data and the (daily) anomalies of
the data sets in Table 1. We also calculate the lagged and cumulative variables from these extreme indices.

Name Description

SD Standard deviation of daily values per month
DIR Difference between max and min daily value per month
Xx Max daily value per month
Xn Min daily value per month
Max5day Max over 5 consecutive days per month
Min5day Min over 5 consecutive days per month
X99p/X95p/X90p Number of days per month over 99th/95th/90th percentile
X1p/X5p/X10p Number of days per month under 1st/5th/10th percentile
T25C1 Number of days per month over 25 ◦C
T0C1 Number of days per month below 0 ◦C
R10mm/R20mm2 Number of days per month over 10/20 mm
CHD (Consecutive high-value days) Number of consecutive days per month over 90th percentile
CLD (Consecutive low-value days) Number of consecutive days per month below 10th percentile
CDD (Consecutive dry days)2 Number of consecutive days per month when precipitation< 1 mm
CWD (Consecutive wet days)2 Number of consecutive days per month when precipitation≥ 1 mm
Spatial heterogeneity3 Difference between max and min values within 1◦ box

1 Only for temperature data sets. 2 Only for precipitation data sets. 3 Only for data sets with native spatial resolution< 1◦ lat–long.
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Figure 4. Linear Granger causality of climate on vegetation. (a) Explained variance (R2) of NDVI anomalies based on a full ridge regression
model in which all climatic variables are included as predictors. (b) Improvement in terms of R2 by the full ridge regression model with
respect to the baseline ridge regression model that uses only past values of NDVI anomalies as predictors; positive values indicate (linear)
Granger causality. (c) A filter approach in which the variable with the highest squared Pearson correlation against the NDVI anomalies is
selected. (d) Improvement in terms of R2 by the filter approach with respect to the same baseline ridge regression model that uses only past
values of NDVI anomalies.

2014). These studies indicate that lag times depend on both
the specific climatic control variable and the characteristics
of the ecosystem. As explained in Sect. 3.3, in our analy-
sis shown in Figs. 4 and 5, we moved beyond traditional
cross-correlations and incorporated higher-level variables in
the form of cumulative and lagged responses to extreme cli-
mate. As mentioned in Sect. 3.3, our experiments indicated
that lags of more than 6 months do not add extra predic-
tive power (not shown), even though the effect of anoma-

lies in water availability on vegetation can extend for several
months (Papagiannopoulou et al., 2017).

To disentangle the response of vegetation to past cumula-
tive climate anomalies and climatic extremes, Fig. 7a visu-
alizes the predictive performance when cumulative variables
and extreme indices are not included as predictive variables
in the random forest model. As shown in Fig. 7b, in almost
all regions of the world the predictive performance decreases
substantially compared to the full random forest model ap-
proach, i.e. using the full repository of predictors (Fig. 5a),
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Figure 5. Non-linear Granger causality of climate on vegetation. (a) Explained variance (R2) of NDVI anomalies based on a full random
forest model in which all climatic variables are included as predictors. (b) Improvement in terms of R2 by the full random forest model with
respect to the baseline random forest model that uses only past values of NDVI anomalies as predictors; positive values indicate (non-linear)
Granger causality.
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especially in regions such as the Sahel, the Horn of Africa,
or North America. In those regions, 10–20 % of the variabil-
ity in NDVI is explained by the occurrence of prolonged
anomalies and/or extremes in climate, illustrating again the
non-linear responses of vegetation. For more detailed results
about lagged vegetation responses for specific climate drivers
and the effect of climate extremes on vegetation, the reader
is referred to Papagiannopoulou et al. (2017).

Because of uncertainties in the observational records used
in our study to represent climate and predict vegetation dy-
namics, and given that ecosystems and regional climate con-
ditions usually extend over areas that exceed the spatial res-
olution of these records, one may expect that the predictive
performance of our models becomes more robust when in-
cluding climate information from neighbouring pixels. In ad-
dition, it is quite likely that neighbouring areas have similar
climatic conditions which, in turn, affect vegetation dynam-
ics in a similar manner. We therefore also consider an exten-
sion of our framework to exploit spatial autocorrelations, in-
spired by Lozano et al. (2009), who achieved spatial smooth-
ness via an additional penalty term that punishes dissimilar-

ity between coefficients for spatial neighbours. In our analy-
sis, we incorporate spatial autocorrelations at a given pixel by
extending the predictor variables of our models with the pre-
dictor variables of the eight neighbouring pixels. We provide
such an extension both for the full and the baseline random
forest model. As such, for the full random forest model, a
vector of 41 139 (4571× 9) predictor variables is formed for
each pixel.

Figure 7c illustrates the performance of the full random
forest model that includes the spatial information. As one
can observe in Fig. 7d, the explained variance of NDVI
anomalies remains similar to the original model that depicts
the same approach without spatial autocorrelation (Fig. 5a).
While in most areas the performance slightly increases, the
explained variance never improves by more than 10 %; as
a result, incorporating spatial autocorrelations in our frame-
work does not seem to further improve the quantification of
Granger causality and is not considered in further applica-
tions of the framework (see Papagiannopoulou et al., 2017).
A possible explanation for this result is that the model with-
out the spatial information cannot be outperformed because
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Figure 7. Analysis of spatiotemporal aspects of our framework. (a) Explained variance (R2) of NDVI anomalies based on a full random
forest model in which all climatic variables are included as predictors as in Fig. 5a, except for the cumulative variables and the extreme
indices (see Sect. 3.3). (b) Difference in terms of R2 between the model without cumulative and extreme predictors and the full random
forest model in Fig. 5a. (c) Explained variance (R2) of NDVI anomalies based on a full random forest model in which all climatic variables
are included as predictors as in Fig. 5a, as well as the predictors from the eight nearest neighbours. (d) Difference in terms of R2 between
this full random forest model which includes spatial information from neighbouring pixels and the full random forest model in Fig. 5a.
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Figure 8. Comparison of model performance with R2 as the metric with the raw NDVI time series as target variable. (a) Full random forest
model. (b) Improvement in terms of R2 of the full random forest model over the baseline random forest model.

of the large dimensionality of the feature space, which may
include redundant information, in combination with the low
number of observations per pixel (Fig. 5a). Note that in this
case the number of observations per pixel remains the same
as in the original model (360 observations) while the number
of predictor variables is 9 times larger.

4.4 The importance of focusing on vegetation
anomalies

In Sect. 3.2, we advocated that Granger-causality analysis
should target NDVI anomalies, as opposed to raw NDVI val-
ues. There are several fundamental reasons for this. First, by
applying a decomposition, one can subtract long-term trends
from the NDVI time series, making the resulting time se-
ries more stationary. This is absolutely needed, as existing
Granger-causality tests cannot be applied for non-stationary
time series. Secondly, by subtracting the seasonal cycle from
the time series, one is not only able to remove a confound-
ing factor that may contribute predictive power without bear-

ing causality but also able to remove a clear autoregressive
component that can be well explained from the NDVI time
series themselves. As vegetation has a strong seasonal cy-
cle, it is not difficult to predict subsequent vegetation con-
ditions by using the past observations of the seasonal cycle
only. To corroborate this aspect, we repeat our analysis in
Sect. 4.2, but this time the raw NDVI time series instead of
the NDVI anomalies are considered as the target variable. We
again compare the full and the baseline random forest mod-
els.

The results are visualized in Fig. 8a. As it can be observed,
worldwide the R2 is close to the optimum of 1. However, due
to the overwhelming domination of the seasonal cycle, it be-
comes very difficult, or even impossible, to unravel any po-
tential Granger-causal relationships with climate time series
in the Northern Hemisphere; see Fig. 8b. The predictability
of NDVI based on the seasonal NDVI cycle itself is already
so high that nothing can be gained by adding additional cli-
matic predictor variables (see also the large amplitude of the
seasonal cycle of NDVI at those latitudes compared to the
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NDVI anomalies, as illustrated in Fig. 2). Therefore, a non-
linear baseline autoregressive model is able to explain most
of the variance in the time series. Moreover, as observed in
Fig. 1, temperature and radiation also manifest strong sea-
sonal cycles that often coincide with the NDVI cycle. For
most regions on Earth, such a stationary seasonal cycle is
less present for variables such as precipitation. This can po-
tentially yield wrong conclusions, such as that temperature in
the Northern Hemisphere is driving most NDVI variability,
since the two seasonal cycles have the same pattern. How-
ever, based on the above discussion, it becomes clear that re-
sults of that kind should be treated with caution: for climate
data, a Granger-causality analysis should be applied after de-
composing time series into seasonal anomalies.

5 Conclusions

In this paper, we introduced a novel framework for study-
ing Granger causality in climate–vegetation dynamics. We
compiled a global database of observational records span-
ning a 30-year time frame, containing satellite, in situ, and
reanalysis-based data sets. Our approach consists of the com-
bination of data fusion, feature construction, and non-linear
predictive modelling. The choice of random forest as a non-
linear algorithm has been motivated by its excellent compu-
tational scalability with regards to extremely large data sets,
but could be easily replaced by any other non-linear machine
learning technique, such as neural networks or kernel meth-
ods.

Our results highlight the non-linear nature of climate–
vegetation interactions and the need to move beyond the
traditional application of Granger causality within a linear
framework. Comparisons to linear Granger-causality-based
approaches indicate that the random forest framework can
predict 14 % more variability of vegetation anomalies on av-
erage globally. The predictive power of the model is espe-
cially high in water-limited regions where a large part of
the vegetation dynamics responds to the occurrence of an-
tecedent rainfall. Moreover, our results indicate the need to
consider multi-month antecedent periods to capture the effect
of climate on vegetation, in particular to account for the ef-
fects of climate extremes on vegetation resilience. The reader
is referred to Papagiannopoulou et al. (2017) for a detailed
analysis of the effect of different climate predictors on the
variability of global vegetation using the mathematical ap-
proach described here.
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