24 research outputs found
Recommended from our members
Surface-to-Bulk Redox Coupling through Thermally Driven Li Redistribution in Li- and Mn-Rich Layered Cathode Materials.
Li- and Mn-rich (LMR) layered cathode materials have demonstrated impressive capacity and specific energy density thanks to their intertwined redox centers including transition metal cations and oxygen anions. Although tremendous efforts have been devoted to the investigation of the electrochemically driven redox evolution in LMR cathode at ambient temperature, their behavior under a mildly elevated temperature (up to ∼100 °C), with or without electrochemical driving force, remains largely unexplored. Here we show a systematic study of the thermally driven surface-to-bulk redox coupling effect in charged Li1.2Ni0.15Co0.1Mn0.55O2. We for the first time observed a charge transfer between the bulk oxygen anions and the surface transition metal cations under ∼100 °C, which is attributed to the thermally driven redistribution of Li ions. This finding highlights the nonequilibrium state and dynamic nature of the LMR material at deeply delithiated state upon a mild temperature perturbation
L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems Using a Transition-Edge-Sensor Array
We present X-ray absorption spectroscopy and resonant inelastic X-ray
scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous
ferricyanide. These measurements demonstrate the ability of high-throughput
transition-edge-sensor (TES) spectrometers to access the rich soft X-ray
(100-2000eV) spectroscopy regime for dilute and radiation-sensitive samples.
Our low-concentration data are in agreement with high-concentration
measurements recorded by conventional grating-based spectrometers. These
results show that soft X-ray RIXS spectroscopy acquired by high-throughput TES
spectrometers can be used to study the local electronic structure of dilute
metal-centered complexes relevant to biology, chemistry and catalysis. In
particular, TES spectrometers have a unique ability to characterize frozen
solutions of radiation- and temperature-sensitive samples.Comment: 19 pages, 4 figure
Design of Magnetic Shielding and Field Coils for a TES X-Ray Microcalorimeter Test Platform
The performance of Transition-Edge Sensors (TES) and their SQUID multiplexed read-outs are very sensitive to the ambient magnetic field from Earth and fluctuations that can arise due to fluctuating magnetic fields outside of the focal plane assembly from the Adiabatic Demagnetization Refrigerator (ADR).Thus, the experimental platform we are building to test the FPA of the X-ray Integral Field Unit (X-IFU) of the Athena mission needs to include a series of shields and a coil in order to meet the following requirement of magnetic field density and uniformity
The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data
We present constraints on cosmological and astrophysical parameters from
high-resolution microwave background maps at 148 GHz and 218 GHz made by the
Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to
2010. A model of primary cosmological and secondary foreground parameters is
fit to the map power spectra and lensing deflection power spectrum, including
contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the
kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy
from unresolved infrared sources, radio sources, and the correlation between
the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal
SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000,
while the corresponding amplitude of the kinematic SZ power spectrum has a 95%
confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the
WMAP 7-year temperature and polarization power spectra, we find excellent
consistency with the LCDM model. We constrain the number of effective
relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56,
in agreement with the canonical value of Neff=3.046 for three massless
neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39
eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and
Hubble constant measurements. We constrain the amount of primordial helium to
be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure
constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We
also find no evidence for any running of the scalar spectral index, dns/dlnk =
-0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013)
and Dunkley et al. (2013). Matches published JCAP versio
The Atacama Cosmology Telescope: Data Characterization and Map Making
We present a description of the data reduction and mapmaking pipeline used
for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The
data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from
2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours
of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours
of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2
hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were
devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial
equator. We discuss sources of statistical and systematic noise, calibration,
telescope pointing, and data selection. Out of 1260 survey hours and 1024
detectors per array, 816 hours and 593 effective detectors remain after data
selection for this frequency band, yielding a 38% survey efficiency. The total
sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in
the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units.
Atmospheric brightness fluctuations constitute the main contaminant in the data
and dominate the detector noise covariance at low frequencies in the TOD. The
maps were made by solving the least-squares problem using the Preconditioned
Conjugate Gradient method, incorporating the details of the detector and noise
correlations. Cross-correlation with WMAP sky maps, as well as analysis from
simulations, reveal that our maps are unbiased at multipoles ell > 300. This
paper accompanies the public release of the 148 GHz southern stripe maps from
2008. The techniques described here will be applied to future maps and data
releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape
The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey
We report on extragalactic sources detected in a 455 square-degree map of the
southern sky made with data at a frequency of 148 GHz from the Atacama
Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources
with flux densities spanning two orders of magnitude: from 15 to 1500 mJy.
Comparison to other catalogs shows that 98% of the ACT detections correspond to
sources detected at lower radio frequencies. Three of the sources appear to be
associated with the brightest cluster galaxies of low redshift X-ray selected
galaxy clusters. Estimates of the radio to mm-wave spectral indices and
differential counts of the sources further bolster the hypothesis that they are
nearly all radio sources, and that their emission is not dominated by
re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with
complete cross-identifications from the Australia Telescope 20 GHz survey, we
observe an average steepening of the spectra between 5, 20, and 148 GHz with
median spectral indices of , , and . When the
measured spectral indices are taken into account, the 148 GHz differential
source counts are consistent with previous measurements at 30 GHz in the
context of a source count model dominated by radio sources. Extrapolating with
an appropriately rescaled model for the radio source counts, the Poisson
contribution to the spatial power spectrum from synchrotron-dominated sources
with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times
10^{-6} \micro\kelvin^2.Comment: Accepted to Ap
The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey
We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich
(SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made
with data from the Atacama Cosmology Telescope 2008 observing season. All SZ
detections announced in this work have confirmed optical counterparts. Ten of
the clusters are new discoveries. One newly discovered cluster, ACT-CL
J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement
comparable to the most massive systems at lower redshifts. Simulations of the
cluster recovery method reproduce the sample purity measured by optical
follow-up. In particular, for clusters detected with a signal-to-noise ratio
greater than six, simulations are consistent with optical follow-up that
demonstrated this subsample is 100% pure. The simulations further imply that
the total sample is 80% complete for clusters with mass in excess of 6x10^14
solar masses referenced to the cluster volume characterized by five hundred
times the critical density. The Compton y -- X-ray luminosity mass comparison
for the eleven best detected clusters visually agrees with both self-similar
and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap