251 research outputs found
Radiation pressure instability driven variability in the accreting black holes
The time dependent evolution of the accretion disk around black hole is
computed. The classical description of the -viscosity is adopted so the
evolution is driven by the instability operating in the innermost
radiation-pressure dominated part of the accretion disk. We assume that the
optically thick disk always extends down to the marginally stable orbit so it
is never evacuated completely. We include the effect of the advection, coronal
dissipation and vertical outflow. We show that the presence of the corona
and/or the outflow reduce the amplitude of the outburst. If only about half of
the energy is dissipated in the disk (with the other half dissipated in the
corona and carried away by the outflow) the outburst amplitude and duration are
consistent with observations of the microquasar GRS 1915+105. Viscous evolution
explains in a natural way the lack of direct transitions from the state C to
the state B in color-color diagram of this source. Further reduction of the
fraction of energy dissipated in the optically thick disk switches off the
outbursts which may explain why they are not seen in all high accretion rate
sources being in the Very High State.Comment: 31 pages, 14 figures; accepted to Ap
Radiation pressure instability as a variability mechanism in the microquasar GRS 1915+105
Physical mechanism responsible for high viscosity in accretion disks is still
under debate. Parameterization of the viscous stress as proved to be
a successful representation of this mechanism in the outer parts of the disk,
explaining the dwarf novae and X-ray novae outbursts as due to ionization
instability. We show that this parameterization can be also adopted in the
innermost part of the disk where the adoption of the -viscosity law
implies the presence of the instability in the radiation pressure dominated
region. We study the time evolution of such disks. We show that the
time-dependent behavior of GRS 1915+105 can be well reproduced if
-viscosity disk model is calculated accurately (with proper numerical
coefficients in vertically averaged equations and with advection included), and
if the model is supplemented with (i) moderate corona dissipating 50% of energy
(ii) jet carrying luminosity-dependent fraction of energy. These necessary
modifications in the form of the presence of a corona and a jet are well
justified observationally. The model predicts outbursts at luminosity larger
than 0.16, as required, correct outburst timescales and
amplitudes, including the effect of increasing outburst timescale with mean
luminosity. This result strongly suggests that the -viscosity law is a
good description of the actual mechanism responsible for angular momentum
transfer also in the innermost, radiation pressure dominated part of the disk
around a black hole.Comment: 6 pages, 2 figures; accepted for publication in ApJ Letter
Recommended from our members
The 'new majority' and the academization of journalism
The academization of journalism is reliant on the development of the field founded in scholarship demonstrated through the publication of research in peer-reviewed specialist journals. Given the profile of journalism faculty, this means inducting practitioners into a culture of critical research. In Australia at least, this cohort of neophytes is predominantly comprised of middle-aged women who were surveyed about their personal attitudes to research. They were mostly open to the idea of becoming researchers but were inclined to proceed cautiously without necessarily severing their ties with practice. There was evidence to suggest that a generally positive orientation to research was not capitalized on and that they remained uncertain about the role of research. On the other hand, they appeared not to have adopted the orthodoxy of implacable opposition to scholarly inquiry. The change in gender composition in the academy may provide, contrary to historical, but more in line with contemporary, evidence, a renewed impetus to the project of academizing the field
Replication and Virus-Induced Transcriptome of HAdV-5 in Normal Host Cells versus Cancer Cells - Differences of Relevance for Adenoviral Oncolysis
Adenoviruses (Ads), especially HAdV-5, have been genetically equipped with tumor-restricted replication potential to enable applications in oncolytic cancer therapy. Such oncolytic adenoviruses have been well tolerated in cancer patients, but their anti-tumor efficacy needs to be enhanced. In this regard, it should be considered that cancer cells, dependent on their tissue of origin, can differ substantially from the normal host cells to which Ads are adapted by complex virus-host interactions. Consequently, viral replication efficiency, a key determinant of oncolytic activity, might be suboptimal in cancer cells. Therefore, we have analyzed both the replication kinetics of HAdV-5 and the virus-induced transcriptome in human bronchial epithelial cells (HBEC) in comparison to cancer cells. This is the first report on genome-wide expression profiling of Ads in their native host cells. We found that E1A expression and onset of viral genome replication are most rapid in HBEC and considerably delayed in melanoma cells. In squamous cell lung carcinoma cells, we observed intermediate HAdV-5 replication kinetics. Infectious particle production, viral spread and lytic activity of HAdV-5 were attenuated in melanoma cells versus HBEC. Expression profiling at the onset of viral genome replication revealed that HAdV-5 induced the strongest changes in the cellular transcriptome in HBEC, followed by lung cancer and melanoma cells. We identified prominent regulation of genes involved in cell cycle and DNA metabolism, replication and packaging in HBEC, which is in accord with the necessity to induce S phase for viral replication. Strikingly, in melanoma cells HAdV-5 triggered opposing regulation of said genes and, in contrast to lung cancer cells, no weak S phase induction was detected when using the E2F promoter as reporter. Our results provide a rationale for improving oncolytic adenoviruses either by adaptation of viral infection to target tumor cells or by modulating tumor cell functions to better support viral replication
Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila
<p>Abstract</p> <p>Background</p> <p>Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in <it>Schizosaccharomyces pombe </it>have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on <it>Drosophila </it>heterochromatin structure.</p> <p>Results</p> <p>The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (<it>dcr-2, ago1, ago2, piwi, Lip [D], aub </it>and <it>hls</it>). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of <it>white-mottled4h </it>position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using <it>Drosophila </it>embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites.</p> <p>Conclusion</p> <p>Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in <it>Drosophila</it>. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in <it>Drosophila</it>.</p
Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay
Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-ÎČ enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.National Human Genome Research Institute (U.S.) (grant R01HG004037)National Science Foundation (U.S.) ((NSF) grant PHY-0957573)National Science Foundation (U.S.) (NSF grant PHY-1022140)Broad Institut
A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast.
Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion
Drosophila Argonaute-1 is critical for transcriptional cosuppression and heterochromatin formation
Argonaute-1 (Ago-1) plays a crucial role in gene regulation and genome stability via biogenesis of small non-coding RNAs. Two âArgonauteâ family genes, piwi and Ago-2 in Drosophila are involved in multiple silencing mechanisms in the nucleus, transgene cosuppression, long-distant chromosome interaction, nuclear organization and heterochromatin formation. To investigate whether Ago-1 also plays a similar role, we have generated a series of Ago-1 mutations by excising P element, inserted in the Ago-1 promoter (Ago-1k08121). AGO-1 protein is distributed uniformly in the nucleus and cytosol in early embryos but accumulated predominantly in the cytoplasm during the gastrulation stage. Repeat induced silencing produced by the mini-white (mw) array and transcriptional cosuppression of non-homologous transgenes Adh-w/w-Adh was disrupted by Ago-1 mutation. These effects of Ago-1 are distict from its role in microRNA processing because Dicer-1, a critical enzyme for miRNA biogenesis, has no role on the above silencing. Reduction of AGO-1 protein dislodged the POLYCOMB, EZ (enhancer of zeste) and H3me3K27 binding at the cosuppressed Adh-w transgene insertion sites suggesting its role in Polycomb dependent cosuppression. An overall reduction of methylated histone H3me2K9 and H3me3K27 from the polytene nuclei precisely from the mw promoters was also found that leads to concomitant changes in the chromatin structure. These results suggest a prominent role of Ago-1 in chromatin organization and transgene silencing and demonstrate a critical link between transcriptional transgene cosuppression, heterochromatin formation and chromatin organization. We propose Drosophila Ago-1 as a multifunctional RNAi component that interconnects at least two unrelated events, chromatin organization in the nucleus and microRNA processing in the cytoplasm, which may be extended to the other systems
- âŠ