521 research outputs found
The Idea of Will
This article presents a new conceptual view on the conscious will. This new concept approaches our will from the perspective of the requirements of our neural-muscular system and not from our anthropocentric perspective. This approach not only repositions the will at the core of behavior control, it also integrates the studies of Libet and Wegner, which seem to support the opposite. The will does not return as an instrument we use to steer, but rather as part of the way we learn new automatic behavior and of how our neural system steers us. The new concept suggests that understanding of our will is more about understanding of our daily behavior than about the will itself
Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems
Regulatory fit at work:gravitational effects and associations with employee well-being
Using a task approach, this study examined the extent to which employee regulatory focus would “gravitate” employees towards promotion- versus prevention-oriented tasks within their jobs, and whether a subsequent regulatory fit/misfit would be associated with their well-being (i.e., mental health and job satisfaction). In a pre-study among 37 employees, we determined the regulatory focus of work tasks from the Netherlands Skill Survey, which are relevant to the general working population, resulting in a selection of 7 promotion and 11 prevention tasks. For our main study, we used the Dutch Longitudinal Internet Studies for the Social Sciences (LISS) panel and collected data from 1,606 respondents. In 2011, we collected respondents’ regulatory focus and in 2012, we collected their work tasks and well-being. Promotion-oriented employees considered both promotion and prevention tasks to be highly relevant in their jobs, and this relevance was associated with their mental health. Prevention-oriented employees, however, did not respond to the relevance of promotion or prevention tasks and generally reported lower well-being, irrespective of the regulatory focus of their tasks. We tentatively conclude that promotion focus gravitates employees towards job with a richer task content, containing both promotion and prevention tasks
Mangrove habitat use by juvenile reef fish: meta-analysis reveals that tidal regime matters more than biogeographic region
Published: December 31, 2014Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future.Mathias M. Igulu, Ivan Nagelkerken, Martijn Dorenbosch, Monique G. G. Grol, Alastair R. Harborne, Ismael A. Kimirei, Peter J. Mumby, Andrew D. Olds, Yunus D. Mgay
The nursery function of artificial floodplain habitats in the lower Rhine and Meuse for riverine fish
Contains fulltext :
202317.pdf (publisher's version ) (Open Access)14th NCR-days 201
Extending Sensitivity for Low-Mass Neutral Heavy Lepton Searches
We point out the importance of two-body final states of weak isosinglet
neutral heavy leptons predicted in several models of new physics beyond the
standard model. We concentrate on muon-type neutral heavy leptons
with mass GeV which can be searched for with increased sensitivity at a
new round of neutrino experiments at CERN and Fermilab. Providing explicit
decay rate formulae for the , , , ,
, and final states, we use general scaling features to
estimate sensitivity of searches in current and future experiments,
emphasizing the importance of the decay mode.Comment: 14 pages, 8 figure
Measurement of electron-neutrino electron elastic scattering
The cross section for the elastic scattering reaction nu_e+e- -> nu_e+e- was
measured by the Liquid Scintillator Neutrino Detector using a mu+ decay-at-rest
nu_e beam at the Los Alamos Neutron Science Center. The standard model of
electroweak physics predicts a large destructive interference between the
charge current and neutral current channels for this reaction. The measured
cross section, sigma_{nu_e e-}=[10.1 +- 1.1(stat.) +- 1.0(syst.)]x E_{nu_e}
(MeV) x 10^{-45} cm^2, agrees well with standard model expectations. The
measured value of the interference parameter, I=-1.01 +- 0.13(stat.) +-
0.12(syst.), is in good agreement with the standard model expectation of
I^{SM}=-1.09. Limits are placed on neutrino flavor-changing neutral currents.
An upper limit on the muon-neutrino magnetic moment of 6.8 x 10^{-10} mu_{Bohr}
is obtained using the nu_mu and \bar{nu}_mu fluxes from pi+ and mu+ decay.Comment: 22 pages, 11 figure
Evolutionary history and species delimitations: a case study of the hazel dormouse, Muscardinus avellanarius
Robust identification of species and significant evolutionary units (ESUs) is essential to implement appropriate conservation strategies for endangered species. However, definitions of species or ESUs are numerous and
sometimes controversial, which might lead to biased conclusions, with serious consequences for the management of
endangered species. The hazel dormouse, an arboreal rodent of conservation concern throughout Europe is an
ideal model species to investigate the relevance of species identification for conservation purposes. This species is a
member of the Gliridae family, which is protected in Europe and seriously threatened in the northern part of its
range. We assessed the extent of genetic subdivision in the hazel dormouse by sequencing one mitochondrial gene
(cytb) and two nuclear genes (BFIBR, APOB) and genotyping 10 autosomal microsatellites. These data were analysed using a combination of phylogenetic analyses and species delimitation methods. Multilocus analyses revealed
the presence of two genetically distinct lineages (approximately 11 % cytb genetic divergence, no nuclear alleles
shared) for the hazel dormouse in Europe, which presumably diverged during the Late Miocene. The phylogenetic
patterns suggests that Muscardinus avellanarius populations could be split into two cryptic species respectively
distributed in western and central-eastern Europe and Anatolia. However, the comparison of several species
definitions and methods estimated the number of species between 1 and 10. Our results revealed the difficulty in
choosing and applying an appropriate criterion and markers to identify species and highlight the fact that consensus
guidelines are essential for species delimitation in the future. In addition, this study contributes to a better
knowledge about the evolutionary history of the species
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution
of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the
associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local
management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef
fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions
and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the
1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites
and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure,
diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale
integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales,
with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas
still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance.
This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should
be integrated into existing management frameworks and combined with policies to improve system-wide resilience to
climate variation and change
- …